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Abstract

The last decade witnessed immense progress in machine learning, which has been
deployed in many domains such as healthcare, finance and justice. However, re-
cent advances are largely powered by deep neural networks, whose opacity hinders
people’s ability to inspect these models. Furthermore, legal requirements are being
proposed to require a level of model understanding as a prerequisite to the deploy-
ment and use. These factors have spurred research that increases the interpretability
and transparency of these models.

This thesis makes several contributions in this direction. We start with a concise
but practical overview of the current techniques for defining and evaluating expla-
nations for model predictions. Then, we observe a novel duality between definitions
and evaluations of various interpretability concepts, propose a new way to generate
explanations and study the properties of these new explanations. Next, we investigate
two fundamental properties of good explanations in detail: correctness – whether the
explanations are reflective of the model’s internal decision making logic, and under-
standability – whether humans can accurately infer the higher level and more general
model behaviors from these explanations. For each aspect, we propose evaluations
to assess existing model explanation methods and discuss their strengths and weak-
nesses. Following this, we ask the question of what instances to explain, and introduce
the transparency-by-example perspective as an answer to this question. We demon-
strate its benefits in revealing hidden properties of both image classifiers and robot
controllers. Last, the thesis identifies directions for future research, and advocates for
a tighter integration of model interpretability and transparency into the ecosystem of
trustworthy machine learning research that also encompass efforts such as fairness,
robustness and privacy.

Thesis Supervisor: Julie A. Shah
Title: H. N. Slater Professor of Aeronautics and Astronautics
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Chapter 1

Promises and Perils of Black-Box
Models

1.1 Introduction

Over the past ten years, machine learning (ML) has rapidly changed society. From
everyday products and features like Google Translate, Facebook friend tagging and
Snapchat filters, to expert-knowledge domains like medical diagnosis, insurance un-
derwriting and loan approval, to emerging technologies like autonomous driving, vir-
tual reality and gene therapy, ML has played key roles in all of them, and it is widely
expected that its importance will only be growing.

Nonetheless, the wide adoptions of ML have brought unique challenges. The goal of
ML is to discover patterns automatically from the data, when we cannot manually
specify them. For example, in image classification, because it is extremely hard, if at
all possible, to write a manual rule classifying whether a matrix of pixels looks more
like a cat or dog, we resort to ML to learn a decision boundary in the space of pixel
matrices to separate those of cats from those of dogs. When the boundary has very
sophisticated shapes, as would be needed for most of the complex tasks, understanding
it becomes a severe challenge. As a result, the models that learn to computing these
boundaries, often represented by deep neural networks or tree ensembles (e.g., random
forests or boosted trees), are generally called “black-box models.”

But, why do we need to, or want to, understand the models? Besides satisfying a
general curiosity, knowing what the models learn serves very practical purposes. Con-
sider a model trained on past lending data to make new mortgage approval decisions.
While we would ideally want the model to make predictions based on the financial
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health and repayment likelihood of the applicant, it could very well learn to rely on
spurious correlations. For example, historically African American people are often
both financially less stable and discriminated by banks, resulting in a strong correla-
tion of this race with loan denial. Hence, the model could learn a simple rule of just
denying African American applicants regardless of their other factors, which is largely
consistent with the training data. For this model, if we have model explanations that
highlight the importance of the race feature to the model prediction, we could easily
discover the racial bias.

As another example, suppose that we want to train a neural network to detect cancers
from X-ray images, wherein the data come from two sources: a general hospital
and a specialized cancer center. As can be expected, images from the cancer center
contain many more cancer cases. However, when rendering the X-ray images, the
cancer center adds a small timestamp watermark to the top-left corner. Since the
timestamp is strongly correlated with cancer presence, a model may learn to use it for
prediction. In this case, while the model can achieve very high accuracy by identifying
either the timestamp or the genuine medical signal of the cancer, the former mode of
operation would miss all detections on cancer-positive images without the timestamp
watermark, such as those coming from different hospitals. Thus, if we realize that
the watermark is indeed important, then we should discard the model and redevelop
the data collection and model training pipeline.

Besides these hypothetical setups, a general lack of understanding into these models
have caused many high-profile failures. For example, the image recognition system in
Google Photos labeled people of dark skins as gorillas, and the conversation bot Tay
by Microsoft generated hate speech under certain prompts. Because we do not have
good understanding into the model behavior, it is very hard to anticipate what image
or what prompt could lead to such egregious behaviors and proactively prevent them
from happening.

Such concerns have led to the development of the area of trustworthy ML, broadly
aimed at making ML systems reliable and dependable after deployment. It encom-
passes many sub-fields, and popularly studied ones include interpretability, trans-
parency, fairness, robustness and privacy. This thesis focuses on the first two, which
attempt to obtain better understanding of black-box models by generating expla-
nations for their predictions or studying its various behaviors (e.g., high-confidence
failures). We focus the thesis on these two topics as they are the “means,” to the
“ends” of fairness, robustness and privacy.

The earlier examples on mortgage approvals and medical diagnosis demonstrate how
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good model understanding could help us detect bias and dataset artifacts that learned
by the system, two important directions in fairness and robustness research. In gen-
eral, given that we know, or suspect, that the model could be discriminative or
non-robust in certain ways, it is relatively easy to test such hypotheses. However,
the known unknown problem, where we know that something could be going on but
do not know what, is much harder to solve, resulting in people often surprised by
the shortcuts learned by the model. Interpretability and transparency methods are
often used to solve such problems, although we also note some important limitations
of existing methods in Chapter 4 and 5.

Finally, an active area of privacy research concerns with training data leakage, in
which certain analysis the model could reveal the exact data instances used to train it.
This issue is ever more alarming as many large language and image models are trained
to explicitly generate realistic outputs in response to certain inputs. While they are
very helpful in many applications, such as dialog systems or computational creativity
(rendering photos in certain artistic styles), it is important to make sure that do
not leak personally identifiable or otherwise sensitive information. Interpretability
and transparency techniques could again be used to study the model and help the
developers understand the situations under which such leakage is likely to happen, so
that certain safeguarding measures can be put in place.

1.2 Thesis Summary

Below, we give an overview of Chapter 2 to 7, which form the technical contents of
this thesis. Chapter 8 reiterates the main ideas of this thesis, and points to avenues of
future work. At a high level, this thesis focuses on the model understanding pipeline
as shown in Figure 1-1.

Input Local Explanation Model Understanding

These features 

are important in 

these situations. 

Model

Correctness Understandability

Bayes-TrEx
RoCUS

Target 
Behavior

Figure 1-1: The model explanation pipeline and its various components.
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The standard approach for model understanding starts at the second stage the pipeline,
where we have identified certain input instances to study. From here, local explana-
tions are generated to illustrate the model reasoning on these inputs. In this thesis,
the “model reasoning” mostly refer to the importance of each feature. Next, these
local explanations are summarized into more global and general pieces of model under-
standing by the human consumer of these explanations to inform subsequent decisions
(e.g., discarding the model due to racial discrimination).

After a brief overview of current state of model interpretability research, focusing on
methods for generating and evaluating local explanations in Chapter 2, we propose a
novel paradigm for generating explanations in Chapter 3 and discuss its implications.
Then in Chapter 4 and 5 we introduce two crucial properties of model explanations,
their correctness and understandability, present methods to evaluate these proper-
ties, and discuss the implications of these findings on the future research of model
explanations.

Last, this thesis also advocates an “earlier” start of the model understanding pipeline.
Rather than starting from arbitrary or random input instances, we should explicitly
consider each model behavior, such as ambivalent predictions or high-confidence mis-
takes, and use them to guide the selection of inputs to explain. Specifically, Chapter
6 and 7 introduce the Bayes-TrEx and RoCUS frameworks to find input instances
that conform to a certain target model behavior. In a sense, these two frameworks
answer the question of “what to explain.”

1.2.1 Background on Model Interpretability

This thesis assumes general knowledge of deep learning on image and text data,
such as convolutional neural networks (CNN) [92], long short-term memory (LSTM)
networks [64] and transformer models [156], equivalent to what is typically covered
in a graduate-level machine learning class. To prepare for technical discussion on
model interpretability, Chapter 2 presents an overview of the current state of model
interpretability. We first introduce the overall goal of model interpretability, and a
taxonomy of interpretability methods on two dimensions: local vs. global methods
and post hoc explanations vs. inherently interpretable models. Our focus in this
thesis is on local post hoc methods, and in particular a type of explanation called
feature attributions, also known as feature importance or saliency maps, which is the
focus of the ensuing technical discussions.

We introduce several common ways to define model explanations. Given a model that
we want to understand and an input whose model prediction we want to explain, each
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definition generates an explanation that helps people understand the model’s decision
making logic in a specific way.

Next, we discuss the problem of evaluating these explanations. Unlike the evalua-
tions of model predictions, which are often validated against the ground truth labels
using metrics such as accuracy or F1 score, the evaluations of model explanations are
complicated by the fact that we do not know the ground truth working mechanism
of the black-box model – the very goal of interpretability techniques. As a result,
people mainly resort to indirect approaches based using proxy metrics, for which we
introduce the most popular one as an example, covering both its intuition and its
mathematical formulation.

1.2.2 Definition-Evaluation Duality

After the background overview, Chapter 3 to 5 study three topics in model inter-
pretability. Chapter 3 directly follows from the discussions on the definitions and
evaluations interpretability methods. In particular, with proper transformations, we
demonstrate that every definition concept can be used as evaluation, while every eval-
uation concept can also be used as definition. We refer to this surprising link as the
definition-evaluation duality.

This observation brings up immediate questions on the current practice of explanation
definition and evaluation. Given that our “stamp of approval” on model explanations
is given after they pass the evaluations, we could instead transform the target evalu-
ation to the definition, which generates explanations that automatically optimize the
evaluation metric. Why are we not doing this? More generally, in the community,
some concepts are used exclusively for definitions while others for evaluations. What
is the fundamental reason for this separation? Last, how should we best evaluate
our model explanations, now that this transformation is readily available and the ex-
planations that optimize the desired evaluation metric can be explicitly defined and
found?

In this chapter, using a high-performing sentiment classifier trained on a movie review
dataset as a case study, we investigate the implications of this definition-evaluation
duality, by explicitly converting the combination of two widely used evaluation met-
rics, comprehensiveness and sufficiency [39] discussed in Chapter 2, into its definition
form. In other words, the explanations computed according to this definition jointly
optimize these two metrics. Such a result should have been celebrated by works that
try to propose novel definitions and show their superior performance on these metrics,
but, because of the duality, is just expected.
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To study the desirability of the resulting explanations, we subject them to a battery
of additional testings. First, we evaluate them on other proxy metrics that are not
directly optimized for. Second, we compute the metric value degradation under ex-
planation value perturbation to study their robustness. Third, under the reasonable
assumption that the high-performing sentiment classifier needs to use sentiment-laden
words for predictions, we check for this alignment between human annotations of sen-
timent values of words and their explanation values. Last, we modify the datasets
such that models trained on the modified versions have to rely on certain signals in the
input to make highly accurate predictions, and check if the explanations can highlight
these signals. We briefly introduce the dataset modification procedure in this chapter
but discuss this evaluation and the implications of the results more extensively in
Chapter 4.

Across all four evaluations, we find that our proposed explanations perform favorably
or competitively against existing ones, which should should motivate the use of these
explanations as strong alternatives to the current practices. We close this chapter
by pointing out two related future work directions worth exploring. First, given that
evaluations can be used as strong definitions, can some definitions be used as strong
evaluations? Answering this question requires us to clearly establish what evaluations
are preferable to others, which brings us to the next direction: how should we best
evaluate model explanations, given that proxy metrics can be directly optimized? We
argue that we should hold explanations accountable to specific types of utilities, such
as model debugging, model auditing and human decision support, and evaluate their
effectiveness in carefully designed user studies.

1.2.3 Correctness of Model Explanations

In Chapter 4, we dive deeper into the dataset modification procedure that is used as
the last evaluation in the previous chapter. Specifically, we consider the problem of
evaluating feature attribution explanations on models whose working mechanisms are
known. We induce the known ground truth by modifying the dataset in a principled
way such that models attaining a high performance have to rely on specific features
that we inject.

Starting with a natural dataset with arbitrary unknown input-label correlation, the
basic intuition behind our dataset modification proposal is to first weaken the corre-
lation such that any model could not perform very well on this correlation-weakened
dataset. Then we inject to the inputs features strongly correlated with labels, allow-
ing models trained on this final dataset to use the injected features to make high-
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performance predictions. If we do observe this high generalization accuracy, then we
are guaranteed that the model has to use our injected features, which gives us the
ground truth to validate our feature attribution explanations.

We implement the first step of correlation weakening by corrupting the labels. For
example, with some probability, we randomly flip the label to the other one (in the
binary setup). This ensures that the model can achieve an accuracy up to the random
flip probability level. In the most extreme case, we can flip the label with probability
of 50%, essentially decorrelating the label from the input, guaranteeing that any
model could not achieve more than 50% accuracy in expectation.

Then in the second step, we inject features conditional on the new labels to ensure
that they do have strong (or even perfect) correlations. An important pragmatic
consideration of this feature injection is that it needs to be localized, in that only a
subset of feature values are affected. For example, for image data, we need to apply
the features to a patch of pixels rather than the whole image, because in the latter
case, the model can again use any part of the image for decision making and we
cannot invalidate any saliency maps.

After these two steps, we know that for models now achieving high accuracy, the
feature injection regions are definitely important to model predictions. Furthermore,
if the labels are completely randomized in the first step, then a perfect model only
focuses on the feature injection regions as everything outside is a distractor. Thus,
we can evaluate %Attr, defined as the sum of attribution scores (absolute value if
necessary) assigned inside the feature injection regions as a percentage of the sum of
all attribution scores, and use it as a measure of the saliency map quality.

In our experiments, we use this procedure to study saliency maps for image classifiers,
rationale models for text classifiers and attention mechanisms for text classifiers. The
features we inject are inspired from studies on dataset spurious correlations, which
show the surprising impact of data artifacts such as watermark and blurring for
images, and article and stop words for texts.

Overall, we found inconsistent results for most explanation methods, and there is no
clear winner across the board. For images, several saliency map methods simply could
not recognize the high importance of certain injected features. Furthermore, when
the features are injected asymmetrically to only the positive class, it is much harder
to explain the absence of the feature for the negative prediction than its presence for
the positive prediction. For texts, while rationale models can generally identify the
important words as rationales, they are also susceptible to over-selection of irrelevant
words, at the expense of missing certain important ones. By contrast, attention scores
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have been found to correlate poorly with ground truth importance of words.

Beyond concrete issues that we have identified above, which are worth investigating
in future research, the overall results also have practical implications on the use of
interpretability methods in general. As machine learning models have been found
to use various kinds of unexpected shortcuts, model explanations like saliency maps
have been hoped by many to provide a solution for the shortcut detection problem. In
addition, the finding that the saliency maps focus on the genuine signals (such as the
tumor in cancer detection) instead of any apparent shortcuts has been used to argue
that the model is right for the right reason. As we demonstrate, even when manually
injected spurious correlations are guaranteed to have a large impact on the model
prediction, the saliency maps may not correctly identify them universally. Thus, we
should be cautious of certifying or trusting models simply because they “pass” the
saliency map inspections.

1.2.4 Understandability of Model Explanations

While both proxy metrics studied in Chapter 3 and the dataset modification pro-
cedure proposed in Chapter 4 are largely concerned about the correctness of model
explanations, in Chapter 5 we propose an orthogonal aspect to correctness that has
received much less attention: their understandability.

As its name suggests, understandability refers to how well people understand these
local explanations, and in particular, how well the local explanations shed light on
the more general model behaviors. To motivate its necessity in the enterprise of
model understanding, it is perhaps best to start with a negative example. Consider
hashing functions, which map inputs of arbitrary length to a fixed-length output
(called “hash”) in a way that the forward mapping is very easy to compute but the
reverse mapping is extremely hard to find, even when the forward mapping (i.e., the
hashing function) is public knowledge. Such functions are used for forgery prevention:
if Alice wants Bob to publish a piece of software on his website but is concerned that
he may tamper with the software, she can publish the hash of the software on her
own website, so that Charlie downloading the software from Bob’s website can check
its hash against the one that Alice publishes to ensure its authenticity. Notably, it
is very easy for Alice to compute the hash and for Charlie to verify it, but it is very
hard for Bob to modify the software while still ending up with the same hash.

In this sense, the hashing function can be considered as a black-box function, an even
more erratic one than a neural network. Can we compute local explanations for the
hashing function? Without going into much technical details right now (which will
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be covered in Chapter 2), the answer is yes, because most of the explanation meth-
ods only need input-output access of the function (which is the forward mapping).
Consider the hashing function that maps, for example, a software of 1 MB = 8× 220

bit to a 128-bit output hash. We could compute the influence of each of the 8 × 220

input bits to each of the 128 output bits. This computation is mechanical, by just
following the definitions of the explanation method.

However, can we understand the model from these local explanations? In a very
narrow sense, also yes, in that the explanation can tell us whether flipping each
input bit can induce the flipping of each output bit. However, this knowledge is
rarely, if at all, useful in any practical purposes. Arguably one outcome of model
understanding is approximate model inversion – obtaining a general knowledge of
what kinds of inputs get mapped to what kinds of outputs. In this aspect, we have
failed completely: hashing functions are designed (and stress-tested for many decades)
to be non-invertible in anyway other than brute force search!

We have just observed a case where explanations, however correct, cannot help us
understand the model which is designed to be fundamentally “non-understandable.”
Now consider the other extreme of linear regression. For two input variables 𝑥1 and 𝑥2,
define the output to be 𝑦 = 10𝑥1 +5𝑥2 +3. Many explanation methods will compute
the importance of 𝑥1 and 𝑥2 as 10 and 5 respectively, regardless of the particular
(𝑥1, 𝑥2) value. This is a reasonable definition, because the function is linear across
the entire input space. Thus, in this case, the local explanations do enable us to
understand the model very well: 𝑥1 is twice as important as 𝑥2.

These two cases illustrate that how well the model explanation helps us understand
the model is orthogonal to how correct it is. The former is much more model de-
pendent than explanation method dependent, and neural networks are most likely
somewhere between linear regressions and hashing functions. Note that we can also
have trivially understandable but totally incorrect explanations. For the hashing
function case, we can “define” an explanation that assigns zero importance to ev-
ery input bit, claiming zero importance for each input bit. Obviously, this is very
incorrect, but it is quite easy to understand – “none of them matter.” Again, this
understanding is useless because it is derived from the wrong explanations.

The technical contribution of Chapter 5 is, then, to mathematically formalize the
concept of understandability. To this end, we propose the explanation summary
framework (ExSum) that distills a large number of model explanations into a small
number of model understanding pieces, each revealing one aspect of how the model
works in general (e.g., words that carry strong positive sentiments have generally
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positive contributions toward the sentiment prediction). ExSum computes three
metrics: coverage, validity and sharpness to give users an intuitive sense of the quality
of their model understanding. As an engineering contribution, we release ExSum as
a standalone Python package for wider adoption.

We use ExSum to understand the explanations for two text models, a sentiment
classifier and a paraphrase detector (i.e., given two sentences, predict if they are
paraphrases of each other). For very popular local explanation techniques, we have
several findings across both models. First, it is indeed precarious to try to under-
stand the models from one or a few local explanations, in that we easily risk over-
generalization, yet unfortunately this is predominantly the current practice. Second,
a careful analysis with ExSum highlights important limitations in our understanding
into these models. In other words, both of the neural network models are far from
the linear regression end – but they are nowhere near the hashing function either, as
local explanations do shed light on important working mechanisms of these models,
such as the importance of sentiment-laden words on model predictions for the sen-
timent classifier. This is more or less expected, as while neural networks generally
behave reasonably, they still use subtle signals in the inputs that are not well under-
stood, which are crucial to their high performance. Last, on the positive side, ExSum
helps us identify model working mechanisms that are previously overlooked, such as
asymmetric treatment of positive vs. negative words for the sentiment classifier and
positive vs. negative predictions for the paragraph detector.

To close this chapter, we discuss the relationship between understandability and
existing evaluations other than correctness, such as human alignment, robustness,
counterfactual similarity and plausibility. As we demonstrate, while all these evalua-
tions can be in conflict with correctness, in that the most correct explanation should
legitimately have low scores on these aspects, we unify them under the theme of un-
derstandability. In other words, if we consider understandability as a complementary
aspect to correctness, all of these evaluations are can be considered as special cases
of understandability, even though they do not evaluate correctness.

1.2.5 Model Transparency by Example

Staring from Chapter 6 and continuing into Chapter 7, we consider a different but
closely related topic of model transparency. Similar to interpretability, it is also aimed
at developing a set of techniques that help people understand their models better,
but is not limited to the use of model explanations. For example, one can inspect
and analyze errors made by a model or study the purpose of each component of the
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model separately. In this thesis, we propose the transparency-by-example (TrEx)
perspective to support model understanding.

The premise of TrEx is simple: to understand a model, we should understand its
various behaviors, and to understand each of these behaviors, we could do so by
finding and studying representative instances that elicit it. The main contribution
of this Chapter 6 is a rigorous definition of the “behaviors” of model and a Bayesian
posterior sampling formulation to find instances for a given behavior. Hence, we call
the resulting framework as Bayes-TrEx.

We represent model behaviors using behavior functions. Before formalizing the con-
cept, we first give three examples.

1. Ambivalence: the (binary) model makes highly uncertain predictions on inputs
(e.g., 55% positive and 45% negative). Such inputs mark the decision boundary
of the model. We define the behavior function as the difference between the two
class probabilities. We want to find inputs with behavior function values as close
to zero as possible.

2. High-confidence mistakes: the model makes highly certain predictions (e.g., 97%
class 𝐴) yet they are incorrect. Such inputs help detect any blind spot by the
model. The behavior function is defined as the probability for the predicted class
if the prediction is incorrect with respect to the ground truth label, and zero
otherwise. We want to find inputs with behavior function values as close to one as
possible (which automatically filters out those with correct predictions).

3. High-confidence predictions under covariate shift: the model makes highly certain
predictions for a particular class on data from a target distribution that is different
from the training distribution. Such instances help assess whether the model’s
covariate shift behaviors are reasonable. The behavior function is defined as the
probability for the predicted class scaled by the probability of the input under the
target distribution. Again, we want to find inputs with behavior function values
as close to one as possible.

In all three cases we can identify some common elements. First, the behavior func-
tion value is based on the model prediction, whether ambivalent predictions or high-
confidence ones. In addition, it may also consider the input (e.g., probability under
the shifted distribution) and the label (e.g., to identify incorrect model predictions).
Last, we have a target behavior function value, and want to find instances that (ap-
proximately) achieve the target value.

Because the target behavior value may be rare (e.g., it is hard to identify high-
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confidence errors for very accurate models), uniformly sampling inputs and filtering
for the behavior value satisfaction is very ineffective. Instead, in this chapter, we
recognize that the behavior value can be decomposed into two parts, one dependent
on the model prediction and the other on the input instance. We then draw analogies
between these two parts and the concepts of likelihood and prior in Bayesian inference,
and transform the problem into sampling from the resulting posterior, for which we
can employ standard Markov chain Monte Carlo (MCMC) techniques.

In the experiment, besides the above three analyses, we demonstrate two additional
ones: high-confidence in-distribution instances to identify prototypical examples for
a certain class and high-confidence instances of novel unseen classes to study extrap-
olation behaviors. We evaluate three image classifiers trained on MNIST, Fashion-
MNIST and CLEVR respectively. For each model, these analyses help us gain ad-
ditional model understanding that would be hard to get from a test set evaluation,
due to the poor coverage of rare behaviors and annotation errors of the test set. We
also investigate a failure case of Bayes-TrEx to identify qualifying instances in one
particular case, and conclude the reason as no such instances existing in the first
place, rather than a sampling failure.

Finally, we also argue that Bayes-TrEx, and the transparency-by-example frame-
work in general, could be considered as answers to the “what to explain” question
and thus interface with the interpretability methods discussed in the earlier chapters.
Currently, the standard practice to understand models via explanations is to com-
pute them on test set inputs and look for any interesting phenomena. However, as
a central argument in this chapter, an investigation based on the test set may not
be suitable for studying certain behaviors. Instead, Bayes-TrEx provides a way to
sample inputs that conform to specific target behaviors, which can then be analyzed
using interpretability techniques to find out the model reasoning responsible for these
behaviors. Concretely, we show, using a saliency map analysis, that one type of high-
confidence error in the CLEVR model results from mis-detections of certain small
objects.

1.2.6 Robot Controller Transparency

As the last technical contribution of this thesis, Chapter 7 extends Bayes-TrEx
to study robot controllers, which brings new opportunities and challenges. We call
this proposal RoCUS, for robot controller understanding via sampling. We represent
an “instance” as an environment and a (potentially stochastic) trajectory generated
by the controller for this environment. The behaviors that we are interested in for
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robot controllers are also different from those for image classifiers, and some robot
controller-specific questions we may ask include “when it is likely to fail,” “when it is
likely to exhibit confusing behaviors,” and “when it steers too closely to the obstacles.”

To answer these questions, in this chapter, we define a new set of behaviors that
capture properties of robot trajectories such as task completion, safety and legibil-
ity. We group them into two broad categories: intentional and emergent. Intentional
behaviors are specifically optimized when the controller is constructed, such as task
completion and trajectory length. Finding instances that satisfy or miss such behav-
iors help us understand the success of the optimization or learning of our controller.
By contrast, emergent behaviors are not directly specified as objectives, but instead
emerge due to the optimization of the intentional behaviors. For example, minimizing
trajectory length may cause the robot to have very small obstacle avoidance margin
and thus safety issues, which can be discovered by finding instances where the safety
behavior is violated (or, conversely, unsafe behavior is present). As in the Bayes-
TrEx case, the instances for a variety of behaviors together help achieve a holistic
understanding of the strengths and weaknesses of the robot controller.

As a technical detail, Bayes-TrEx is originally designed to work with finite behavior
value targets, such as 0 or 1. This is a reasonable assumption because the behavior
functions are defined based on predicted probability. However, for robot controllers,
we may want to find environments that lead to maximal values of certain behavior,
such as trajectory length. One ad hoc fix would be to set the target value to be
a very large one. In RoCUS, we propose a transformation on behavior values to
automatically deal with this case.

In the experiment, we study two domains, each with three different controllers. For
a 2D navigation task with obstacles, we study an imitation learning (IL) controller,
a dynamical system (DS) controller, and a rapidly-exploring random tree (RRT)
controller. For a 7 degree-of-freedom (DoF) robotic arm table-top reaching task, we
study a reinforcement learning (RL) controller, and the same formulations of DS and
RRT controllers.

Our analyses of a suite of behaviors exhibit several insights of these controllers. For
example, both IL and DS controllers demonstrate unsafe behaviors with small margins
around obstacles on the 2D navigation task, but for different reasons: the IL controller
is adversely affected by data collection while the DS controller suffers from an issue in
its mathematical formulation. For the 7 DoF arm reaching task, both RRT and DS
controllers suffer from an asymmetry in the kinematic structure of the arm, and it is
particularly severe for DS, which often fails to reach the target in our first iteration
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of design. With the help of RoCUS, we are able to pinpoint the cause of the failure
and make it succeed more frequently. By contrast, the RL controller learns to work
around the asymmetry and does not exhibit any issues.

1.2.7 References

Chapter 3 to 7 are based on the following papers (* denotes equal contribution):

• Yilun Zhou and Julie Shah. The Solvability of Interpretability Evaluation Metrics.
Findings of the Association for Computational Linguistics: EACL, 2023.

• Yilun Zhou, Serena Booth, Marco Tulio Ribeiro and Julie Shah. Do Feature Attri-
bution Methods Correctly Attribute Features? In AAAI Conference on Artificial
Intelligence (AAAI), 2022.

• Yilun Zhou, Marco Tulio Ribeiro and Julie Shah. ExSum: From Local Expla-
nations to Model Understanding. In Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies
(NAACL-HLT), 2022.

• Serena Booth*, Yilun Zhou*, Ankit Shah and Julie Shah. Bayes-TrEx: A Bayesian
Sampling Approach to Model Transparency by Example. In AAAI Conference on
Artificial Intelligence (AAAI), 2021.

• Yilun Zhou, Serena Booth, Nadia Figueroa and Julie Shah. RoCUS: Robot Con-
troller Understanding via Sampling. In Conference on Robot Learning (CoRL),
2021.

1.3 Thesis Statement

In this thesis, we scrutinize the use of local explanations to understand models, iden-
tify problems with the current practice and propose solutions to them. The thesis
statement of the thesis is:

Local model explanations are promising, but currently insufficient, to yield a holistic
understanding of the model. This thesis reflects on the questions of what to explain,
how to explain, and how to evaluate explanations and proposes respective answers,
each of which is crucial for the end goal of model understanding.
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Chapter 2

Background on Model Interpretability

2.1 Overview

This thesis builds upon almost a decade of research into model interpretability, and
makes use of many fundamental concepts and algorithms. In this chapter, we provide
a self-contained introduction to the general field of model interpretability, focusing
more heavily on the topics directly related to this thesis. For additional information,
the textbook by Molnar [108] is an excellent introduction to this field. Readers already
with such a background should feel free to skim through or skip this chapter.

While there are many definitions and perspectives on what term of interpretability
specifically encapsulates [40, 50, 134], we take the pragmatic approach and consider it
to include any methods or frameworks that provide some form of explanations of the
model’s prediction logic that are intended for people to make more informed decisions.

2.2 Axes of Interpretability Methods

At a high level, interpretability techniques can be classified into local vs. local meth-
ods, and post hoc explainers vs. inherently interpretable models.

On the local vs. global axis, a local explanation is defined on an individual instance
and tries to exhibit the model reasoning on the prediction of this particular instance.
For example, a wide range of feature attribution explanations, such as gradient saliency
[142] and LIME [128] have been proposed to compute the contribution of each feature
towards the prediction that the model makes on the input under explanation. As can
be expected, a single features can have different contributions in the explanations of
different inputs, so the attribution scores are local to particular inputs. By compar-
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ison, a global explanation attempts to encapsulate the model reasoning on a large
set of inputs, or even the entire input space. One such technique for explaining con-
volutional neural networks involves the visualization of each convolution filter [119],
which does not require (and thus is independent) of individual inputs. In addition,
the natural explanations for transparent models are often global as well: the coeffi-
cients serve as the global explanations for linear and logistic regression models, and
the tree structure of a shallow decision tree indicates its logic.

The movie 
was amazing

The movie 
was amazing Positive

Input Selector Rationale Classifier Prediction

Figure 2-1: Neural rationale model architecture. For an input, the selector identifies
an excerpt, called the rationale, from which the predictor makes a prediction.

On the post hoc vs. inherently interpretable axis, post hoc explanations refers to
the use of an external algorithm or procedure, called the explainer, to compute the
explanation for models that we accept as black-boxes, such as neural networks and
random forests. By comparison, inherently interpretable models generate an explana-
tion while making the prediction. As such, they generally require nontrivial architec-
tural modification, sometimes at the cost of model performance. One representative
architecture is the neural rationale models [94], shown in Figure 2-1, used for text
classification. These models have two components: a selector and a classifier. Upon
receiving the input text, the selector first selects a few words from the input, called
the rationale, and passes them (and only them) to the classifier, which needs to make
a decision. The selector and classifier are typically represented as neural networks and
trained jointly by minimizing the negative likelihood loss of the classifier’s prediction.
Because the rationale is the only information accessible to the classifier, it is often
considered as the explanation. Along the same line of such two-module pipelined
design are prototype models [97] and concept bottleneck models [85], where the inter-
mediate representation between these two modules is often treated as the explanation
for the model prediction.

2.3 Local Post Hoc Explanations

The majority of interpretability methods are local and post hoc, most likely because
they are simpler (being local) and more model-agnostic (being post hoc). With few
exceptions, this thesis focuses on these explanations. Furthermore, we mainly study
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feature attribution explanations, due to their versatility of being applied in different
domains such as tabular data, images and texts. To set a common background for the
ensuing technical discussions, we introduce a set of very common feature attribution
methods. For simplicity, we consider classification models, but the generalization to
regression models is straightforward.

Let 𝒳 be the input space and 𝒴 = {1, ..., 𝐾} be the 𝐾-class label space. Let 𝑓 :

𝒳 → ∆𝐾−1 be the model prediction function that maps an input to a probability
distribution over classes, where ∆𝐾−1 = {𝑝 ∈ R𝑘 : 𝑝𝑘 ≥ 0,

∑︀
𝑘 𝑝𝑘 = 1} is the 𝐾 − 1

dimensional probability simplex. We further define 𝑓𝑙 : 𝒳 → R𝐾 to output the
logit of the prediction. Hence, 𝑓(𝑥) and 𝑓𝑙(𝑥) are related by a softmax function:
𝑓(𝑥)𝑘 = 𝑒𝑓𝑙(𝑥)𝑘/

∑︀
𝑘′ 𝑒

𝑓𝑙(𝑥)𝑘′ . Below, we present several definitions of attribution score
on feature 𝑖 for explaining class 𝑘.

The gradient [142] attribution is defined as 𝜕𝑓𝑙(𝑥)𝑘/𝜕𝑥𝑖, or the partial derivative of
the logit for class 𝑘 with respect to feature 𝑖. When the feature is itself vector-valued,
such as the RGB representation of a pixel value or embedding representation of a
word, we take the partial derivative with respect to each entry of the vector and
aggregate them by the norm, most often 𝑙2.

The smooth gradient [143] (SmoothGrad) attribution is defined as E𝜖∼𝒩 (0,𝜎2)[𝜕𝑓𝑙(𝑥

+ 𝜖)𝑘/𝜕𝑥𝑖], for some 𝜎2, which is essentially an average of gradient attribution over
the distribution of Gaussian noise-corrupted inputs.

The grad×input attribution is defined as 𝜕𝑓𝑙(𝑥)𝑘/𝜕𝑥𝑖 · 𝑥𝑖, which multiplies the gra-
dient by the feature value. When the feature is vector-valued, the multiplication is
implemented as a dot product.

The integrated gradient [146] (IntGrad) uses a baseline 𝑏 ∈ 𝒳 , often chosen as the
all-zero input, and is defined as

[︁∫︀ 1

0
𝜕𝑓𝑙(𝛼𝑥+ (1− 𝛼)𝑏)𝑘/𝜕𝑥𝑖d𝛼

]︁
· (𝑥𝑖 − 𝑏𝑖). It is easy

to see that when 𝑓𝑙(𝑥) is linear in 𝑥, IntGrad with 𝑏 = 0 reduces to grad×input.

The occlusion [170] attribution is defined as 𝑓(𝑥)𝑘− 𝑓(𝑥−𝑖)𝑘, where 𝑥−𝑖 is the input
𝑥 with feature 𝑖 “removed.” The removal operation is often done by zeroing out the
feature value (i.e., replacing with the black pixel in image or zero embedding vector
in text). For text, it could also be implemented by deleting the word directly or
replacing it with the [MASK] token.

The LIME explanation [128] fits a linear regression of 𝑓(·)𝑘 using points locally
around 𝑥, with those closer to 𝑥 (under a some distance metric) weighted more than
those farther away. The attribution on 𝑥𝑖 is the regression coefficient on 𝑥𝑖. We refer
readers interested in the details of the neighborhood sampling and weighting function
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to the original paper [128].

The SHAP explanation [99] implements an approximate computation of the Shapley
value [133] for each feature:

𝜑𝑖 =
∑︁

𝑆⊆𝐹−{𝑖}

|𝑆|!(|𝐹 | − |𝑆| − 1)!

|𝐹 |!
[︀
𝑓(𝑥𝑆∪{𝑖})𝑘 − 𝑓(𝑥𝑆)𝑘

]︀
, (2.1)

where 𝐹 is the set of all features, and 𝑥𝑆 is the input but with only features in the
set 𝑆 turned on (a common practice is to zero out all other features not in 𝑆). We
refer readers interested in the details of the methods of approximation to the original
paper [99].

For fully convolutional networks (i.e., those without fully connected layers), the class
activation mapping [173] (CAM) computes the explanation as an average across
the output channels of the last convolution layer, weighted by their coefficients toward
the target class being explained. Its extension to networks with fully connected layers,
GradCAM [138], propagates gradients through these layers and incorporates them
to the CAM computation. Thus, for fully convolutional networks, GradCAM reduces
to CAM. For mathematical details of these methods, we again refer the readers to
the original papers.

In subsequent discussions, when there is no ambiguity, we write 𝑓(·)𝑘 as 𝑓(·), making
the class target implicit.

2.4 Evaluations of Explanations

Given all these definitions, it is natural to expect that some may lead to better ex-
planations than others. However, a rigorous and accurate evaluation of explanations
is surprisingly tricky. Unlike the evaluation of model predictions, the most straight-
forward approach of validating against a ground truth does not work, as illustrated
in Figure 2-2: the very reason we use model explanations is the lack of understanding
into the black-box model prediction process, which means that we cannot compare
the model explanations against the ground truth model reasoning processes.

To circumvent this no-ground-truth problem, most evaluations are based on proxy
metrics. They often implement the same principle: if a feature is important, then
removing it from the input should have a relatively large impact on the model pre-
diction, compared to the removal of other features. One of the most popular proxy
metric, known as comprehensiveness [39] or area under perturbation curve (AoPC)
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Problem: don’t know 
how models work

Solution: develop 
explanation methods

Evaluation: compare 
with ground truth 
reasoning process

Figure 2-2: The root of complications in the evaluations of model explanations.

[135] operationalizes this principle in the following way: to evaluate an explanation 𝑒

on input 𝑥 that assigns a score to each feature of 𝑥, it first creates �̃�(𝑙)
𝑒 for 𝑙 = {0, ..., 𝐿}

where 𝐿 is the number of features in 𝑥 (e.g., number of words in the sentence or num-
ber of pixels in the image). We define �̃�(𝑙)

𝑒 by taking the original input 𝑥 and removing
the top-𝑙 influential features. The removal can be done in many different ways, such
as zeroing out the pixel or embedding value, replacing with [MASK] token, or delet-
ing the word, similar to the treatment by the occlusion explainer. We define the
comprehensiveness metric 𝜅 is as

𝜅(𝑥, 𝑒) =
1

𝐿+ 1

𝐿∑︁
𝑙=0

𝑓(𝑥)− 𝑓(�̃�(𝑙)
𝑒 ), (2.2)

and a higher 𝜅 value represents a better explanation. A graphical illustration, demon-
strating that LIME is better than gradient explanation for a particular model predic-
tion, is shown in Figure 2-3.

In Chapter 3, we highlight an interesting duality between the definitions (e.g., gradi-
ent and LIME) and evaluations (e.g., comprehensiveness) of explanations, such that
evaluations can be interpreted as, in a sense, definitions, while definitions can also be
interpreted as evaluations. We study the implications of this duality and rethink the
development paradigm of explanation methods.

Upon a closer look at Figure 2-3, one should notice that the model is forced to make
predictions on highly unnatural and ungrammatical inputs such as “The is”, violating
the central assumption of machine learning that the training and test distributions
should be the same. Thus, when the model makes nonsensical predictions on such
nonsensical inputs, it is not clear how much we could trust the metric scores. In
Chapter 4, we propose a different way to circumvent the “impossible triangle” of Figure
2-2, by modifying a dataset to inject carefully designed correlations and retraining
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LIME
Gradient

The film is great !

Gradient

The film is great !

LIME

෤𝑥𝑒
𝑙

𝑓 The film is great ! − 𝑓 ෤𝑥𝑒
𝑙

Figure 2-3: For both LIME and gradient explanations, we plot the comprehensiveness
curve, and since the one for LIME is above that for gradient, we conclude that LIME
is a better explanation in this case.

the model, hence enabling ground truth validation.

Last, most of the definitions and evaluations have so far focused on making the
explanations correct, or in other words, faithful, to the model’s true reasoning process.
Without a doubt, this is a worthy and crucial goal. However, in Chapter 5, we
define an orthogonal desideratum of explanations – their understandability – and
with our proposed explanation summary (ExSum) framework, demonstrate that a
careful analysis of understandability is as necessary as that of correctness.
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Chapter 3

Interpretability Definition-Evaluation
Duality

3.1 Introduction

As discussed earlier, there are two components to model interpretability: definition
and evaluation. The definition prescribes what the explanation should be, and we have
seen concepts such as gradient and LIME being used as the definitions, to represent
the notions that explanations should describe the local sensitivity (for gradient) or
the local linear approximation (for LIME) of the decision function.

After an explanation is computed using a certain definition, it needs to be evaluated,
which tells us how well it actually exhibits the model’s decision making logic. This
evaluation is often carried out by computing proxy metrics, such as the comprehen-
siveness metric introduced earlier, which checks whether removing the features that
are judged as most important by the explanation really does have a large impact on
the model prediction.

In general, there seems to be a consensus within the community that some notions
are more definitional while others are more evaluational. For example, many saliency
map definitions reviewed earlier, such as Grad, IntGrad and LIME are always used
as definition, while other concepts such as comprehensiveness and decision flip rate
under feature removal [28, 139] (introduced below) are always used as evaluations. Is

This chapter is based on the EACL 2023 (Findings) paper “The Solvability of Interpretability
Evaluation Metrics” by Yilun Zhou and Julie Shah [176].
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this division of concepts truly warranted, or is it a false conception throughout?

In this chapter, we observe a duality between the definitions and evaluations of inter-
pretability notions. To ground our discussion more tangibly, let us consider the pair
of gradient definition and comprehensiveness evaluation, introduced earlier:

𝐷𝑔(𝑥) = ∇𝑥𝑓𝑙(𝑥), (3.1)

𝐸𝜅(𝑥, 𝑒) =
1

𝐿+ 1

𝐿+1∑︁
𝑙=0

𝑓(𝑥)− 𝑓(�̃�(𝑙)
𝑒 ), (3.2)

where we use 𝐷 for definition and 𝐸 for evaluation for notation clarity. Thus, the
endeavor of interpretability is to compute 𝐷𝑔(𝑥) and 𝐸𝜅(𝑥,𝐷𝑔(𝑥)), which represents
the explanation and its quality.

Can we, instead, switch 𝑔 and 𝜅 in the two expressions and compute 𝐷𝜅(𝑥) and
𝐸𝑔(𝑥,𝐷𝜅(𝑥))? In other words, we want to find an “evaluational” version for gradient
and a “definitional” version for comprehensiveness. Below is one such possibility:

𝐸𝑔(𝑥, 𝑒) = −||∇𝑥𝑓𝑙(𝑥)− 𝑒||, (3.3)

𝐷𝜅(𝑥) = argmax
𝑒∈R𝐿

1

𝐿+ 1

𝐿+1∑︁
𝑙=0

𝑓(𝑥)− 𝑓(�̃�(𝑙)
𝑒 ). (3.4)

Essentially, we define the gradient evaluation metric value on an explanation 𝑒 as
the distance of 𝑒 to the true input gradient, and the comprehensiveness definition as
the explanation that maximizes the comprehensiveness metric. In both cases, it is
easy to see that 𝐸*(𝑥,𝐷*(𝑥)) ≥ 𝐸*(𝑥, 𝑒) for all 𝑒, and when this holds, we say that
𝐷* solves 𝐸*, and they form a duality pair. Thus, in theory, analogous to how we
compute the explanation with gradient and evaluate it on comprehensiveness, we can
also compute it with comprehensiveness and evaluate on gradient. Why are we not
doing it? More crucially, if we take the evaluation results on popular metrics such as
comprehensiveness to represent “explanation quality,” then why should we choose to
use any explanation definition other than the one that “solves” the target evaluation
metric (i.e., its definition dual)?

We suspect that there are at least two reasons for this definition-evaluation division.
First, notions more commonly used as definitions are often considered as more “el-
egant”: for example, gradient represents the local curvature of the decision surface
and SHAP is based on Shapley value axioms [133] while 𝐷𝜅 has no easily identifiable
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meaning. Second, they are presumably easier to compute: for example, computing
𝐷𝑔 only requires a single pass of backpropagation while computing 𝐷𝜅 seems like a
hard optimization problem.

We push back on the first reason on elegance by arguing that definitions are intrin-
sically unjustifiable. Thus, pursuing the apparent “elegance” of a definition may be
misguided, especially when they are underspecified [26] or theoretically unsound [117].

Our main investigation concerns the second reason, that optimizing 𝐷𝜅 (and other
traditionally evaluational notions) is much harder. Indeed, an exact optimization is
very hard, but as we show in the next few sections, a beam search procedure could
easily find an approximately optimal solution and generate convincing explanations.

To rephrase the contribution of this chapter, as shown in Figure 3-1, while there has
been commonly agreed upon positions for most interpretability concepts on the defi-
nition vs. evaluation spectrum, the duality observation allows us to freely move every
concept around, and in particular, we explore the implications of deriving definitional
versions of the comprehensiveness and sufficiency metrics (solid arrows).

SHAP Occlusion

“Definitional” “Evaluational”

Gradient ComprehensivenessRobustness SufficiencyLIME

Figure 3-1: A definition-evaluation spectrum for interpretability concepts. We pro-
pose a duality concept that allows us to freely move all of them along this scale, with
the two solid arrows investigated in this chapter.

3.2 Common Evaluation Metrics

Other than comprehensiveness (which is repeated below for convenience), there are
several other popular evaluation metrics that are commonly used.

We define the sequence of input deletions �̃�
(0)
𝑒 , �̃�

(1)
𝑒 , ..., �̃�

(𝐿)
𝑒 , where �̃�

(𝑙)
𝑒 is the input

with the 𝑙 most important features removed. Thus, �̃�(0)
𝑒 = 𝑥 and �̃�

(𝐿)
𝑒 is the empty

string. The comprehensiveness 𝜎 [39] is defined as

𝜅(𝑥, 𝑒) =
1

𝐿+ 1

𝐿∑︁
𝑙=0

𝑓(𝑥)− 𝑓(�̃�(𝑙)
𝑒 ), (3.5)

and a higher 𝜅 value represents a better explanation.
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Analogously, we define the sequence of input insertions ̂︀𝑥(0)
𝑒 , ̂︀𝑥(1)

𝑒 , ..., ̂︀𝑥(𝐿)
𝑒 , where ̂︀𝑥(𝑙)

𝑒 is
the input with the 𝑙 most important features present. Thus, ̂︀𝑥(0)

𝑒 is the empty string
and ̂︀𝑥(𝐿)

𝑒 = 𝑥, but this sequence does not otherwise mirror {�̃�(𝑙)
𝑒 }. The sufficiency 𝜎

[39] is defined as

𝜎(𝑥, 𝑒) =
1

𝐿+ 1

𝐿∑︁
𝑙=0

𝑓(𝑥)− 𝑓(̂︀𝑥(𝑙)
𝑒 ). (3.6)

It measures the gap to the original model prediction that remains (i.e., convergence to
the model prediction) when features are successively inserted from the most important
to the least. Therefore, a smaller value is desirable.

Another interpretation of prediction change just considers decision flips. Let 𝑔 : 𝒳 →
{0, ..., 𝐾} be the function that outputs the most likely class of an input. Recall that
�̃�
(𝑙)
𝑒 in the comprehensiveness definition is the input 𝑥 but without the top-𝑙 important

tokens according to 𝑒. The decision flip by removing the most important token
[28] is defined as

DFMIT(𝑥, 𝑒) = 1
𝑔(�̃�

(1)
𝑒 )̸=𝑔(𝑥)

, (3.7)

which measures whether removing the most important token changes the decision.
Across a dataset, its average value gives the overall decision flip rate, and a higher
value is desirable.

The fraction of token removals for decision flip [139] is defined as

DFFrac(𝑥, 𝑒) =
argmin𝑙 𝑔(�̃�

(𝑙)
𝑒 ) ̸= 𝑔(𝑥)

𝐿
, (3.8)

and we define DFFrac = 1 if no value of 𝑙 leads to the decision flip. This metric
represents the fraction of feature removals that is needed to flip the decision, and
hence a lower value is desirable.

Last, two metrics evaluate correlations between model prediction and feature impor-
tance. For an input 𝑥 and explanation 𝑒, we define the sequence of marginal feature
deletions 𝑥

(1)
− , ..., 𝑥

(𝐿)
− such that 𝑥

(𝑙)
− is original input with only the 𝑙-th important

feature removed. The deletion rank correlation [5] is defined as

𝛿𝑓 = [𝑓(𝑥)− 𝑓(𝑥
(1)
− ), ..., 𝑓(𝑥)− 𝑓(𝑥

(𝐿)
− )], (3.9)

RankDel(𝑥, 𝑒) = 𝜌(𝛿𝑓 , 𝑒), (3.10)
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where 𝜌(·, ·) is the Spearman rank correlation coefficient between the two input vec-
tors. Intuitively, this metric asserts that suppressing a more important feature should
have a larger impact to the model prediction. A higher correlation is desirable.

The insertion rank correlation [100] is defined as

𝑣 = [𝑓(�̃�(𝐿)), ..., 𝑓(�̃�(0))], (3.11)

RankIns(𝑥, 𝑒) = 𝜌(𝑣, [0, ..., 𝐿]). (3.12)

This metric asserts that the model prediction on this sequence should increase mono-
tonically to the original prediction. Also a higher correlation is desirable.

3.3 The Solvability of Evaluation Metrics

As mentioned in earlier, when a definition and an evaluation form a duality pair,
we say that the definition solves the evaluation, which is formally established in this
section. Observe that each evaluation metric, e.g., comprehensiveness 𝜅, is defined on
the input 𝑥 and the explanation 𝑒, and its computation only uses the model prediction
function 𝑓 (or 𝑔 derived from 𝑓 for the two decision flip metrics). In addition, the
form of feature attribution explanation constrains 𝑒 to be a vector of the same length
as 𝑥, or 𝑒 ∈ R𝐿.

Without loss of generality, we assume that the metrics are defined such that a higher
value means a better explanation (e.g., redefining the sufficiency to be the negative
of its original form). We formalize the concept of solvability as follows:

Definition 3.3.1. For a metric 𝑚 and an input 𝑥, an explanation 𝑒* solves the metric
𝑚 if 𝑚(𝑥, 𝑒*) ≥ 𝑚(𝑥, 𝑒) for all 𝑒 ∈ R𝐿. We also call 𝑒* the 𝑚-solving explanation.

Notably, there are already two explanation-solving-metric cases among the ones in
Section 3.2.

Theorem 1. The occlusion explainer solves the DFMIT and RankDel metrics.

The proof follows from the definition of the explainer and the two metrics. Occlusion
explainer defines token importance as the prediction change when each token is indi-
vidually removed, thus the most important token is the one that induces the largest
change, which makes it most likely to flip the decision under DFMIT. In addition, be-
cause token importance is defined as the model prediction change, its rank correlation
with the latter (i.e., RankDel) is maximal at 1.0.

Theorem 1 highlights an important question: if we take DFMIT or RankDel as the
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metric (i.e., indicator) of explanation quality, why should we consider any other ex-
planation, when the occlusion explanation provably achieves the optimum? A possible
answer is that the metrics themselves are problematic. For example, one can argue
that the DFMIT is too restrictive for overdetermined input: when redundant features
(e.g., synonyms) are present, removing any individual one cannot change the predic-
tion, such as for the sentiment classification input of “This movie is great, superb and
beautiful.”

Nonetheless, the perceived quality of a metric can be loosely inferred from its adoption
by the community, and the comprehensiveness and sufficiency metrics [39] are by
far the most widely used. They overcome the issue of DFMIT by also considering
inputs with more than one token removed. Since a metric value is scalar, we combine
comprehensiveness 𝜅 and sufficiency 𝜎 into comp-suff difference ∆, defined as (recall
that a lower sufficiency value is better):

∆(𝑥, 𝑒) = 𝜅(𝑥, 𝑒)− 𝜎(𝑥, 𝑒). (3.13)

Again, we face the same question: if ∆ is solvable, why should any heuristic explainers
be used instead of the ∆-solving 𝑒*? In the next two sections, we seek to answer it by
first proposing a beam search algorithm to (approximately) find 𝑒* and then explore
its various properties.

3.4 Solving Metrics with Beam Search

We first define two properties – value agnosticity and additivity – satisfied by some
metrics.

Definition 3.4.1. For an input 𝑥 = (𝑥1, ..., 𝑥𝐿) with explanation 𝑒 = (𝑒1, ..., 𝑒𝐿), we
define the ranked importance as 𝑟(𝑥𝑙) = |{𝑒𝑖 : 𝑒𝑖 ≤ 𝑒𝑙, 1 ≤ 𝑖 ≤ 𝐿}|. In other word,
the 𝑥𝑙 with 𝑟(𝑥𝑙) = 𝐿 is the most important, and that with 𝑟(𝑥𝑙) = 1 is the least. A
metric 𝑚 is value-agnostic if for all 𝑒1 and 𝑒2 that induce the same ranked importance,
we have

𝑚(𝑥, 𝑒1) = 𝑚(𝑥, 𝑒2). (3.14)

A value-agnostic metric has at most 𝐿! unique values across all possible explana-
tions for an input of length 𝐿. Thus, in theory, an exhaustive search over the 𝐿!

permutations of the list [1, 2, ..., 𝐿] is guaranteed to find the 𝑒* that solves the metric.
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Definition 3.4.2. A metric 𝑚 is additive if it can be written in the form of

𝑚(𝑥, 𝑒) =
𝐿∑︁
𝑙=0

ℎ(𝑥, 𝑒(𝑙)), (3.15)

for some function ℎ, where 𝑒(𝑙) reveals the attribution values of 𝑙 most important
features according to 𝑒 but keeps the rest inaccessible.

Theorem 2. Comprehensiveness, sufficiency and their difference are value-agnostic
and additive.

The proof is straightforward, by observing that both �̃�(𝑙) and ̂︀𝑥(𝑙) can be created from
𝑥 and the ordering of 𝑒(𝑙). In fact, all metrics in Section 3.2 are value-agnostic (but
only some are additive).

A metric satisfying these two properties admits an efficient beam search algorithm
to approximately solve it. As 𝑒(𝑙) can be considered as a partial explanation that
only specifies the top-𝑙 important features, we start with 𝑒(0), and try each feature
as most important obtain 𝑒(1). With beam size 𝐵, if there are more than 𝐵 features,
we keep the top-𝐵 according to the partial sum. This extension procedure continues
until all features are added, and top extension is then 𝑒*. Algorithm 1 documents
the procedure, where ext(𝑒, 𝑣) extends 𝑒 and returns a set of explanations, in which
each new one has value 𝑣 on one previously empty entry of 𝑒. Finally, note that 𝑒*

generated on Line 8 has entry values in {1, ..., 𝐿}, but some words may contribute
against the prediction (e.g., “This movie is truly innovative although slightly cur-
sory.”). Thus, we post-process 𝑒* by shifting all values by 𝑘 such that the new values
(in {1− 𝑘, 𝐿− 𝑘}) maximally satisfy the sign of marginal contribution of each word
(i.e., the occlusion saliency values).

Algorithm 1: Beam search for finding 𝑒*.
1 Input: beam size 𝐵, metric 𝑚, sentence 𝑥 of length 𝐿;
2 Let 𝑒(0) be an empty length-𝐿 explanation;
3 beams ← {𝑒(0)};
4 for 𝑙 = 1, ..., 𝐿 do
5 beams ←

⋃︁
𝑒∈ beams

ext(𝑒, 𝐿− 𝑙 + 1);

6 beams ← choose_best(beams, 𝐵);
7 𝑒* ← choose_best(beams, 1);
8 𝑒* ← shift(𝑒*);
9 return 𝑒*;

Without the additive property, beam search is not feasible due to the lack of partial
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metric values. To cope with this problem, we can use a similar procedure to search
for the optimal feature importance order using a simulated annealing algorithm [84]
employed by Zhou et al. [181] for the search of the optimal data acquisition order in
active learning. If the metric is value-sensitive, assuming that it is continuous and
differentiable with respect to the explanation value, we can use techniques such as
gradient descent to search for 𝑒*. Since we focus on comprehensiveness and sufficiency
in this chapter, the development of these approaches are left to future work.

3.5 Experiments

We investigate various properties of the beam search explainer vs. existing heuris-
tic explainers, using the publicly available textattack/roberta-base-SST-2 model on
the Stanford Sentiment Treebank (SST) dataset [144] as a case study. This dataset
contains short movie review sentences, which are mapped to a sentiment value as a
number between 0 (very negative) and 1 (very positive). We binarize the value into
two classes of [0, 0.4] and [0.6, 1]. Sentences with sentiment values in middle are dis-
carded due to ambiguity. The average sentence length is 19, making the exhaustive
search impossible. We use a beam size of 100 to search for ∆-solving explanation E*.
All reported statistics are computed on the test set.

3.5.1 Qualitative Inspection

Figure 3-2 presents some explanations. While we need more quantitative analyses
(carried out below) for definitive conclusions on its various properties, E* explanations
at least looks reasonable and could plausibly help people understand the model by
suggesting the high importance of sentiment-laden words to the predictions.

3.5.2 Performance on the Target Metric

We compare E* to heuristic explainers on the ∆ metric, with results shown in Table 3.1
along with the associated 𝜅 and 𝜎. A random explanation baseline is included for
reference. We can see that E* achieves the best ∆, often by a large margin. It also
tops the ranking separately for 𝜅 and 𝜎, which suggests that an explanation could be
optimally comprehensive and sufficient at the same time.

To get a visual understanding about how the model prediction changes during feature
removal and insertion, we plot in Figure 3-3 the values of 𝑓(𝑥) − 𝑓(�̃�(𝑙)) and 𝑓(𝑥) −
𝑓(̂︀𝑥(𝑙)) (i.e., the summands in Eq. 3.5 and 3.6), as a function of 𝑙/𝐿. The left panel
shows the curves averaged across all test set instances, and the right panel shows
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A triumph , relentless and beautiful in its downbeat darkness .

Ranks among Willams ’ best screen work .

Zany , exuberantly irreverent animated space adventure .

Behind the snow games and lovable Siberian huskies ( plus one sheep dog ) , the
picture hosts a parka-wrapped dose of heart .

... a haunting vision , with images that seem more like disturbing hallucinations

.

Suffocated at conception by its Munchausen-by-proxy mum .

A dreadful live-action movie .

It ’s an awfully derivative story .

Figure 3-2: A sample of E* explanations. The shade of background color represents
feature importance.

Explainer Comp 𝜅 ↑ Suff 𝜎 ↓ Diff ∆ ↑
Grad 0.327 0.108 0.218
IntG 0.525 0.044 0.481

LIME 0.682 0.033 0.649
SHAP 0.612 0.034 0.578

Occl 0.509 0.040 0.469
E* 0.740 0.020 0.720

Random 0.218 0.212 0.006

Table 3.1: Comprehensiveness, sufficiency and their difference for various explainers.

those for a specific instance. 𝜅 and 𝜎 are thus the areas under the solid and dashed
curves respectively. We can see that the curves for E* dominate the rest, and, on
individual inputs, are also much smoother than those for other explanations.

Admittedly, beam search is slower than most other explainers, especially those that
only require a single pass of the model such as the vanilla gradient. However, we
note that explanations, unlike model predictions, are rarely used in real-time decision
making. Instead, they are mostly used for debugging and auditing purposes, and
incurring a longer generation time to obtain a higher-quality explanation is often
beneficial. On a single RTX3080 GPU card without any in-depth code optimization,
the metric values and time costs for various beam sizes are presented in Table 3.2,
with statistics for the best explainer LIME also listed for comparison.
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Figure 3-3: Metric curves for the beam search optimal explainer vs. others.

𝐵 1 5 10 20 50 100 LIME
𝜅 0.717 0.731 0.734 0.736 0.739 0.740 0.682
𝜎 0.020 0.020 0.020 0.020 0.020 0.020 0.033
∆ 0.697 0.711 0.714 0.716 0.719 0.720 0.649
𝑇 0.56 2.15 4.53 8.83 21.01 41.00 4.75

Table 3.2: Effect of beam size 𝐵 on metric values 𝜅, 𝜎,∆ and computation time 𝑇 (in
seconds), compared against the statistics of the best heuristic explainer LIME.

We have two observations. First, the metric values increase with increasing beam size,
but the improvement is meager after 10 beams. Second, even the greedy search with
a single beam outperforms LIME by a decent margin, while being almost 10 times
faster. Thus, if we take comprehensiveness and sufficiency as the quality metrics,
there is really no reason not to use beam search directly as the explainer.

3.5.3 Performance on Other Metrics

Section 3.2 lists many metrics that all operationalize the same principle that chang-
ing important features should have large impact on model prediction, but in different
ways. A potential argument against the explicit beam search optimization is the ful-
fillment of the Goodhart’s Law: E* overfits to the metric by exploiting its realization
(i.e., Eq. 3.5 and 3.6) of this principle and not truly reflecting its “spirit.”

To establish the legitimacy of this opposition, we evaluate all the explainers on the
remaining four metrics in Section 3.2, and present the results in Table 3.3.
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Explainer DFMIT↑ DFFrac↓ RankDel↑ RankIns↑
Grad 10.5% 54.5% 0.162 0.521
IntG 16.9% 39.6% 0.369 0.468

LIME 25.5% 28.1% 0.527 0.342
SHAP 23.0% 36.1% 0.369 0.458

Occl 26.4% 40.6% 1.000 0.396
E* 25.0% 25.2% 0.438 0.423

Random 3.4% 72.3% 0.004 0.599

Table 3.3: Performance on non-target metrics of the beam search explainer vs. others.

Since the occlusion explainer solves DFMIT and RankDel (Theorem 1), it ranks the
best on these two metrics, as expected. Nonetheless, E* still ranks competitively on
these two metrics and comes out ahead on DFFrac. The only exception is RankIns, on
which the random explanation surprisingly performs the best. However, while this
expectation seems reasonable, it suffers from a critical issue due to the convention
in ranking features: if a feature contributes against the prediction, such as a word
of sentiment opposite to the prediction (e.g., a positive prediction on “Other than
the story plot being a bit boring, everything else is actually masterfully designed
and executed.”), it should have negative attribution and the convention is to put
them lower in the rank (i.e., less important) than those have zero contributions. This
implementation leads to the correct interpretation of all other metric values.

However, under this convention, the first few words added to the empty input should
decrease the model prediction and then increase it, leading to a U-shaped curve. In
fact, it is the comprehensiveness curve shown in Figure 3-3, flipped both horizon-
tally (because features are inserted rather than removed) and vertically (because the
plotted quantity is the model prediction rather than change in prediction). Thus,
a deeper U-shape should be preferred, but it is less monotonic. This also explains
why the random attribution baseline achieves such a high ranking correlation: as we
randomly add features from the empty string to the full input, on average the curve
should be a more or less monotonic interpolation between model predictions on empty
and full inputs, which has better monotonicity rank correlation than the U-shape.

It is not clear how to fix the metric. Previous works that proposed [100] or used
[24] this metric often ignored the issue. One work [10] filtered out all features of
negative attribution values and evaluated the rank correlation only on the rest. This,
however, is easily manipulatable by an adversary. Specifically, an explainer could
shift all attribution values down such that only the most positive one has a non-
negative value. This change results in a perfect correlation as long as removing
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the most positive feature induces a decrease in model prediction – an especially low
requirement to satisfy. Empirically, we found that inserting features based on their
(unsigned) magnitude barely affects the result either. Thus, we argue that this metric
is not a good measurement of explanation quality.

Last, note that we can also incorporate any of these metrics into the objective function
(which already contains two metrics: 𝜅 and 𝜎), and search for E* that performs overall
the best, if so desired. We leave this investigation to future work.

3.5.4 Explainer “Attacking” the Model

Another concern is that the search procedure may overfit to the model. Specifically,
removing a word 𝑤 in a partial sentence �̃�(𝑙) drastically changes the model prediction
but does not have the same effect for most other �̃�(𝑙′). This makes E* assign 𝑤 an
overly high attribution, as 𝑤 only happens to have a high impact in one particular
case. By contrast, explainers like LIME and SHAP automatically avoid this issue by
computing the average contribution of 𝑤 on many different partial sentences.

We test this concern by locally perturbing the explanation. If E* uses many such
“adversarial attacks,” we should expect its metric values to degrade sharply under
perturbation, as the high-importance words (according to E*) will no longer be influ-
ential in different partial sentence contexts.

To perturb the explanation, we first convert the each explanation 𝑒 to its ranked
importance version 𝑒𝑟 using 𝑟(·) in Definition 3.4.1, which does not affect any metric
as they are value-agnostic. Then we define the perturbed rank by adding to each
entry of 𝑒𝑟 an independent Gaussian noise: 𝑒′𝑟 = 𝑒𝑟 +𝑛 with 𝑛 ∼ 𝒩 (0, 𝑠2). Thus, two
words 𝑥𝑖 and 𝑥𝑗 with 𝑟(𝑥𝑖) > 𝑟(𝑥𝑗) have their ordering switched if the 𝑟(𝑥𝑖)− 𝑟(𝑥𝑗) <

𝑛(𝑥𝑗) − 𝑛(𝑥𝑖). Figure 3-4 visually presents the random perturbation, with different
standard deviation 𝑠 of the Gaussian noise. In each panel, the top row orders the
features by their ranked importance, from least important on the left to most on the
right, and the bottom row orders the features with perturbed ranked importance,
with lines connecting to their original position. For example, in the top panel for
𝑠 = 1, the perturbation swaps the relative order of the two least important features
on the left.

Figure 3-5 plots the metrics under different 𝑠 values (RankIns not shown due to its in-
trinsic issue). Everything degrades to various extents. Although E* degrades slightly
faster than the rest on 𝜅 and DFFrac (and on par on others), it still achieves best
results even at 𝑠 = 4, with many order switchings (Figure 3-4), and a faster degra-
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Figure 3-4: Visualization of rank perturbation under different values of 𝑠.
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Figure 3-5: Metric values for explanations under different levels of perturbation rep-
resented by 𝑠 on the 𝑥-axis.

dation is reasonable anyway for metrics with better starting values (cf. occlusion on
RankDel).

The evidence suggests that there is at most a slight model overfitting phenomenon, as
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E* remains comparable to other explainers under quite severe perturbation. Further-
more, we can incorporate perturbation robustness into metric solving to obtain an E*

that degrade less, similar to adversarial training [102]. We leave the exploration of
this idea to future work.

From another perspective, while it is possible that the model could use some short-
cuts [47], we would expect it to predominantly use sentiment-conveying words, as it
achieves high accuracy and no such shortcuts are known for the dataset. In this case,
we should expect an explainer that does not adversarially exploit the model to give
attributions for words correlated with their sentiment values, while an explainer that
attacks the model would rate words that are “adversarial bugs” to be more important.

Conveniently, the SST dataset provides human annotations of the polarity score be-
tween 0 and 1 for each word, where 0 means very negative, 1 means very positive, and
0.5 means neutral. We compute the alignment between the attribution values (for the
positive class) and this score for each word. Given a sentence 𝑥 = (𝑥1, ..., 𝑥𝐿) with
explanation 𝑒 = (𝑒1, ..., 𝑒𝐿) and word polarity score 𝑠 = (𝑠1, ..., 𝑠𝐿), the alignment is
defined as the Spearman rank correlation coefficient 𝜌(𝑒, 𝑠). Since the vanilla gra-
dient only produces non-negative values, it is impossible to identify whether a word
contributes to or against the positive class, and we exclude it from the analysis.

Figure 3-6 plots the distribution of rank correlations among the test set instances, with
the average shown as the bar and also annotated on the horizontal axis. Although
no method achieves very high alignment, E* is the second-highest, after LIME. Thus,
giving out assumption that high-polarity words are the indeed genuine signals used
by the model for making predictions, we can conclude that E* does not adversarially
exploit the model for its vulnerability more severely than the heuristic explainers.
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Figure 3-6: Spearman rank correlation coefficient between intrinsic word polarity
score and attribution value.
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3.5.5 Ground Truth Recovery

Beyond proxy metrics, we follow the procedure introduced in Chapter 4 to modify the
dataset such that a model trained on the new dataset has to follow a certain ground
truth working mechanism to achieve high performance, which allows for evaluations
against the known mechanism.

Ground Truth Definitions We construct three types of ground truth features –
short additions, long additions and replacements. First, we randomize the label tô︀𝑦 ∼ Unif{0, 1} so that the original input features are no longer predictive.

For the two addition types, a word or a sentence is inserted randomly to either the
beginning or the end of the input. The inserted text is randomly chosen from the
corresponding set in Table 3.4.

Type ̂︀𝑦 = 0 ̂︀𝑦 = 1

Short terrible, awful, disaster, worst, never excellent, great, fantastic, brilliant, enjoyable

Long

A total waste of time.
Not worth the money!
Is it even a real film?
Overall it looks cheap.

I like this movie.
This is a great movie!
Such a beautiful work.
Surely recommend it!

Table 3.4: Set of insertions for the addition type according to the new label ̂︀𝑦. The
words are comma-separated for “short”, and each line is one piece of text for “long”.

For the replacement type, each word in the input is checked against the list of re-
placement word sets in Table 3.5, and if the word belongs to the one set, it is changed
according to the new label ̂︀𝑦. On average, 27% of input words are replaced.

Replacement word sets ̂︀𝑦 = 0 ̂︀𝑦 = 1

a, an, the a the
in, on, at in on
I, you I you
he, she he she
can, will, may can may
could, would, might could might
(all forms of be) is are
(all punctuation marks) (period) (comma)

Table 3.5: Replacement word sets and their target words.

We call these modifications symmetric since inputs corresponding to both ̂︀𝑦 = 0 and̂︀𝑦 = 1 are modified. We also define the asymmetric modification, where only inputs
with ̂︀𝑦 = 1 are modified, and those with ̂︀𝑦 = 0 are left unchanged.
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Metrics We use the two metrics proposed by Bastings et al. [16]: precision and
normalized rank. First, we define the ground truth correlated words. For the two
addition types, they are the inserted words. In the asymmetric case, instances witĥ︀𝑦 = 0 do not have any words added, so we exclude them in metric value computation.
Note that this highlights an intrinsic limitation of feature attribution explanations:
they cannot explain that the model predicts a class because certain features are not
present, which is discussed more extensively in Chapter 4. For the replacement type,
they are the words that are in the replacement set (but not necessarily replaced).

Let 𝑊 be the set of ground truth correlated words. Using ranked importance 𝑟(·) in
Definition 3.4.1, precision and normalized rank are defined as

Pr =
|{𝑤 ∈ 𝑊 : 𝑟(𝑤) > 𝐿− |𝑊 |}|

|𝑊 |
, (3.16)

NR =
𝐿−min{𝑟(𝑤) : 𝑤 ∈ 𝑊}+ 1

𝐿
. (3.17)

Precision is the fraction of ground truth words among the the top-|𝑊 | ranked words,
and normalized rank is the lowest rank among ground truth words, normalized by
the length 𝐿 of the input. Both values are in [0, 1], and higher precision and lower
normalized rank values are better.

Results Table 3.6 presents the average values across the test set. Many explain-
ers including E* score perfectly on short additions, but all struggle on other types.
Nonetheless, E* still ranks comparably or favorably to other methods. Its largest ad-
vantage happens on the asymmetric long addition, because this setup matches with
the computation of 𝜅 and 𝜎: E* searches for the most important words to remove/add

Short Addition Long Addition Replacement
Sym Asym Sym Asym Sym Asym

Explainer Pr ↑ NR ↓ Pr ↑ NR ↓ Pr ↑ NR ↓ Pr ↑ NR ↓ Pr ↑ NR ↓ Pr ↑ NR ↓
Grad 0.91 0.06 0.51 0.08 0.70 0.37 0.77 0.30 0.50 0.75 0.51 0.74
IntG 0.82 0.10 0.60 0.21 0.60 0.76 0.70 0.55 0.49 0.74 0.48 0.74

LIME 1.00 0.06 1.00 0.06 0.72 0.60 0.84 0.32 0.63 0.65 0.54 0.71
SHAP 0.98 0.07 1.00 0.06 0.61 0.83 0.75 0.98 0.65 0.67 0.62 0.68

Occl 1.00 0.06 1.00 0.06 0.72 0.59 0.79 0.42 0.40 0.80 0.40 0.85
E* 1.00 0.06 1.00 0.06 0.67 0.64 0.92 0.38 0.60 0.66 0.54 0.73

Random 0.06 0.54 0.07 0.53 0.25 0.89 0.24 0.88 0.27 0.85 0.28 0.85

Table 3.6: Average values of precision and normalized rank of the ground truth cor-
related words for each explainer.
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to maximally change/preserve the original prediction, and those words are exactly the
ground truth inserted ones. For replacement and symmetric addition, the search pro-
cedure does not “reconstruct” inputs of the other class, and hence optimizing ∆ fails
to uncover the ground truth. This finding also suggests a mismatch between metric
computation and certain ground truth types.

Conversely, vanilla gradient performs decently on ground truth types other than short
addition, yet ranks at the bottom on most quality metrics (Table 3.1 and 3.3), again
likely due to the mismatch.

3.6 Discussion

Through a series of empirical investigations, we found that the E* explanation derived
from solving the comprehensiveness and sufficiency metrics [39] turns out to be a
competitive explanation all around.

Rather than fixating these solvable proxy metrics, we should adopt (more) evaluations
that focus on demonstrable utilities of the explanation since, fundamentally, local ex-
planations are means to an end – the end of better understanding the model. In other
words, the presence of explanation compared to its absence, or the newly proposed
explanation compared to existing ones, should lead to a measurable difference in some
practically beneficial aspect.

During model development, a major concern is that the model may pick up spurious
correlations, and explanations are hoped to identify them, but such capability has
been called into question recently [3, 182].

Before model deployment, understanding the safety and reliability of models is crucial,
especially for when models take physical actions in the world such as medication
prescription. Jia et al. [77] found that model explanations are promising but currently
insufficient to achieve it.

For deployed models, Bansal et al. [14] found that existing explanation methods rarely
help a human decision maker assisted by a imperfect model (e.g., in computer-aided
diagnosis), but instead exacerbate the overtrust issue. Evidence for improved human
performance is another demonstration of the concrete utilities of explanations.

Demonstrating that explanations help in such scenarios would bypass discussions of
solvability and directly assert their usefulness. The three listed here are by no means
comprehensive, and a systematic taxonomy is valuable. Furthermore, it is likely
that no single explainer is a one-size-fits-all solution. More refined knowledge of the
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strengths and weaknesses of each method in supporting different aspects of model
understanding is highly desirable.

From a different perspective, the duality observation should suggest a rethinking of
explainer development. Currently, people propose explainers and then establish their
superiority based on better metric values. However, it may be fruitful to reverse this
process, by instead focusing on the proposal of metric definitions better aligned with
aspects of demonstrable utilities, and taking the resulting E* to use in deployment.

More generally, we should not consider any concept as fixed on the definition vs.
evaluation scale, but explore the implication of considering traditionally definitional
ones as evaluations and vice versa. This chapter takes the first step in this direction by
exploring the implications moving the concepts of comprehensiveness and sufficiency
towards the definitional end and obtaining some promising results (Figure 3-1 solid
arrows). Accordingly, future work could consider performing such an investigation
on other evaluation metrics, and conversely studying the effectiveness of using some
definitional concepts as evaluations (Figure 3-1 dashed arrows).
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Chapter 4

Correctness of Model Explanations

4.1 Introduction

The previous chapter shows that evaluations based on proxy metrics have correspond-
ing definitions of explanations that optimize these metrics. This is not necessarily
undesirable: if the proxy metric values are monotonically correlated with the “true
explanation quality,” then we should celebrate the feat of obtaining globally optimal
explanations. However, Figure 2-3 cautions that many such evaluations use model
predictions on out-of-distribution inputs, introducing errors to the procedure.

In this chapter, we approach the evaluation problem from a different angle, and in-
stead propose to evaluate these attribution methods on semi-natural datasets: natural
datasets systematically modified to introduce ground truth information for attribu-
tions. This modification (Figure 4-1) ensures that any classifier with sufficiently high
performance has to rely, sometimes solely, on the manipulations. We then present
desiderata, or necessary conditions, for correct attribution values; for example, fea-
tures known to have no effect on the model’s decision should not receive any attribu-
tion. The high-level idea is domain-general, and we apply it on image and text data
to evaluate saliency maps, rationale models and attention mechanisms used to ex-
plain common deep learning architectures. We identify several failure modes of these
methods, discuss potential reasons and recommend directions to fix them. Last, we
advocate for testing new attribution methods against ground truth to validate their
performance before deployment.

This chapter is based on the AAAI 2022 paper “Do Feature Attribution Methods Correctly
Attribute Features?” by Yilun Zhou, Serena Booth, Marco Tulio Ribeiro and Julie Shah [182].
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Figure 4-1: The intuition behind our feature attribution ground truth: if we know
that, for every input, only specific features (orange) are informative to the label, then
across the dataset, a high-performing model has to focus on them and not get “dis-
tracted” by other irrelevant features. Thus, feature attributions should highlight the
union of these features (purple), and any attribution outside this area is misleading.

4.2 The Importance of Explanation Correctness

Consider the cancer diagnosis example introduced in Chapter 1, where a small times-
tamp is added on the images produced by the specialized cancer center but not the
general hospital, and as a result strongly correlates with the cancer presence label.

It is important to ensure the deployed model makes predictions based on genuine
medical signals rather than image artifacts like watermarks. If these artifacts are
known a priori, we can evaluate the model on counterfactual pairs – images with and
without them – and compute prediction difference to assess their impact. However,
for almost all datasets, we cannot realistically anticipate every possible artifact. As
such, feature attribution methods like saliency maps [142] are used to identify regions
which are important for prediction, which humans then inspect for evidence of any
artifacts. This train-and-interpret pipeline has been widely adopted in data-driven
medical diagnosis [109, 140, 141] and many other applications.

Crucially, this procedure assumes that the attribution methods works correctly and
does not miss influential features. Is this truly the case? A direct evaluation on
natural datasets is impossible as the very spurious correlations we want attribution
methods to find are, by definition, unknown (cf. the impossible triangle in Figure
2-2).

A popular way is to assess alignment with human judgment, but models and hu-
mans can reach the same prediction while using distinct reasoning mechanisms (e.g.,
medical signals used by doctors and watermarks used by the model). For example,
SmoothGrad [143] is proposed as an improvement to the original Gradient [142] since
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it gives less noisy and more legible saliency maps, but it is not clear whether saliency
maps should be smooth. Bastings et al. [15] evaluated their rationale model by as-
sessing its agreement with human rationale annotation, but a model may achieve high
accuracy with subtle but strongly correlated textual features such as grammatical id-
iosyncrasy. Covert et al. [33] compared the feature attribution of a cancer prediction
model to scientific knowledge, yet a well-performing model may rely on other signals.
In general, positive results from alignment evaluation only support plausibility [73],
not correctness, also known as faithfulness.

Another common approach successively removes features with the highest attribution
values and evaluates certain metrics. One metric is prediction change [e.g. 9, 70, 135],
but it fails to account for nonlinear interactions: for an OR function of two active
inputs, the evaluation will (incorrectly) deem whichever feature removed first to be
useless as its removal does not affect the prediction. Another metric is model retrain-
ing performance [67], which may fail when different features lead to the same accuracy
– as is often possible [42]. For example, a model might achieve some accuracy by using
only feature 𝑥1. If a retrained model using only 𝑥2 achieves the same accuracy, the
evaluation framework would (falsely) reject the ground truth attribution of 𝑥1 due to
the same re-training accuracy.

Most similar to our proposal are works that also construct semi-natural datasets with
explicitly defined ground truth explanations [2, 167]. Adebayo et al. [2] used a perfect
background correlation for a dog-vs-bird dataset, found that the model achieves high
accuracy on background alone, and claimed that the correct attribution should focus
solely on the background. However, we verified that a model trained on their dataset
can achieve high accuracy simultaneously on foreground alone, background alone, and
both combined, invalidating their ground truth claim. Similarly, Yang and Kim [167]
argue that for background classification, a label-correlated foreground should receive
high attribution value, but a model could always rely solely on background with
perfect label correlation. We avoid such pitfalls via label reassignment (Section 4.4),
so that the model must use target features for high accuracy. Furthermore, a more
subtle failure mode, in which the model can (rightfully) use the absence of information
for a prediction, is avoided by our joint effective region formulation, discussed in the
Remark at the end of Section 4.4.

Finally, Adebayo et al. [1] proposed sanity checks for saliency maps by assessing their
change under weight or label randomization. We establish complementary criteria for
explanations by instead focusing on model-agnostic dataset-side modifications, and
identify additional failure cases.

55



4.3 Desiderata for Attribution Values

What should the attribution values be? Although the precise values are defined by
each explainer (e.g., the values by the SHAP explainer are (approximate) Shapley
values), certain properties are de facto requirements if we want people to understand
how a model makes a decision, verify that its reasoning process is sound, and possibly
inform options for correction if it is not (cf. the cancer detection model). For example,
while LIME and SHAP define attribution differently, both would be undeniably bad
if they highlight features completely ignored by the model.

We study two types of features: those of fundamental importance to the model,
denoted by 𝐹𝐶 , and those non-informative to the label, denoted by 𝐹𝑁 . A first
requirement is that explanations should not miss important features, 𝐹𝐶 . Unfortu-
nately, identifying all such features is not easy. For example, while the model could
potentially use the timestamp on some X-ray images for cancer prediction, it could
instead exclusively rely on genuine medical features (as done by human doctors),
and attributions should only highlight the timestamp in the former case. This diffi-
culty motivates our dataset modification procedure detailed in the next section. In
brief, we can modify the dataset such that any model using only medical features
could not achieve a high accuracy (due to introduced label noise), thus establish-
ing the ground truth usage of the timestamp for any model with high accuracy.
We can then evaluate how well the attribution method identifies the contribution of
the timestamp by the attribution percentage Attr% of the timestamp pixels, with
Attr%(𝐹 )

.
=

(︀∑︀
𝑖∈𝐹 |𝑠𝑖|

)︀
/
(︁∑︀𝐷

𝑖=1 |𝑠𝑖|
)︁
, where 𝐷 is the total number of features and

𝑠𝑖 is the attribution value assigned to the 𝑖-th feature. Since 𝐹𝐶 contains the features
used by the model, we should expect Attr%(𝐹𝐶) ≈ 1.

Conversely, we can introduce non-informative features 𝐹𝑁 independent from the label
– for example, a white border added to randomly selected images. While the model
prediction could depend on it (e.g., more positive for those with the border), meth-
ods that study features contributing to the performance should not highlight 𝐹𝑁 .
In addition, any reliance on 𝐹𝑁 is detrimental to performance, and as performance
increases, a good prediction is less “distracted” by 𝐹𝑁 , which should correspondingly
not get highlighted, or in other words Attr%(𝐹𝑁) should decrease to 0.

In addition to continuous attributions on all features, another formulation selects 𝑘

features, with no distinction among them. This can either be derived by a top-𝑘 post-
processing to induce sparse explanations, or generated directly by some models, e.g.,
as rationales [94]. For the first case, a hyper-parameter 𝑘 needs to be chosen. A small
value risks missing important features while a large value may include unnecessary
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features that obfuscate true model reasoning. For the second case, 𝑘 is typically chosen
automatically by the model, e.g., the rationale selector. In both cases, ensuring that
𝐹𝐶 is highlighted (i.e., Attr% = 1) is easily “hackable” by just selecting all features. As
such, we instead use two information-retrieval metrics, precision and recall, defined as
Pr(𝐹 ) = |𝐹 ∩ 𝐹𝐶 |/|𝐹 |, and Re(𝐹 ) = |𝐹 ∩ 𝐹𝐶 |/|𝐹𝐶 | for evaluating these attributions,
where 𝐹 is the 𝑘 selected features.

4.4 Dataset Modification with Ground Truth

Input 𝑋

Output 𝑌 Reassigned output ෠𝑌

Input 𝑋 Input 𝑋

Manipulation 𝑀

Reassigned output ෠𝑌 Reassigned output ෠𝑌

Manipulated input ෠𝑋

Accuracy 𝑝(1) Accuracy 𝑝(2) Accuracy 𝑝(3)

Figure 4-2: The workflow for our dataset modification. Arrows represent dependencies
in the modification process.

We now present the dataset modification procedure that lets us quantify the influence
of certain features to the model. We use a running example of adding a watermark
pattern to a watermark-free X-ray cancer dataset, such that the newly added water-
mark is guaranteed to affect the model decision.

Let 𝒳 and 𝒴 .
= {1, ..., 𝐾} be input and output space for 𝐾-class classification. Figure

4-2 shows two modification steps: from an original data instance (1st column), label
reassignment reduces the predictive power of existing signals (2nd column) and input
manipulation introduces new predictive features (3rd and 4th columns).

Label Reassignment Our goal is to ensure that the model has to rely on certain
introduced features (e.g., a watermark) to achieve a high performance. However,
the model could in theory use any of the existing features (e.g., medical features)
to achieve high accuracy, and thus disregard the new feature, even if it is perfectly
correlated with the label. To guarantee the model’s usage of new features, we need
to weaken the correlation between the original features and the labels.

We first consider label reassignment for binary classification, which is used in all
experiments. During reassignment, the label is preserved with probability 𝑟 and
flipped otherwise, so the accuracy without relying on the manipulation is at most
𝑝* = max(𝑟, 1 − 𝑟). For the special case of 𝑟 = 0.5, no features are informative to
the label, and the performance is random in expectation. After label reassignment, a
data point (𝑥, 𝑦) becomes (𝑥, ̂︀𝑦).
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More generally, the 𝐾-class setting is represented by a reassignment matrix 𝑅 ∈
R𝐾×𝐾 . According to this matrix, the label reassignment process assigns a new label̂︀𝑦 based on the original label 𝑦 with probability 𝑅𝑦,̂︀𝑦. The expected accuracy 𝑝(2) of
any classifier is bounded by 𝑝* = max𝑖,𝑗 𝑅𝑖,𝑗.

Input Manipulation Next, we apply manipulations on the input 𝑥 according to
its reassigned label ̂︀𝑦. We consider a set of 𝐿 input manipulations,ℳ = {𝑚1, ...,𝑚𝐿},
and a manipulation function 𝑞 : ℳ× 𝒳 → ̂︀𝒳 such that 𝑞(𝑚𝑙, 𝑥) = ̂︀𝑥 applies the
manipulation on the input and returns the manipulated output ̂︀𝑥. ℳ can include
the blank manipulation 𝑚∅ that leaves the input unchanged.

To facilitate feature attribution evaluation, we require the manipulation to be local,
in that 𝑞(𝑚,𝑥) affects only a part of the input 𝑥. Formally, we define the effective
region (ER) of 𝑚𝑙 on 𝑥 as the set of input features modified by 𝑚𝑙, denoted as
𝜑𝑙(𝑥)

.
= {𝑖 : [𝑞(𝑚𝑙, 𝑥)]𝑖 ̸= 𝑥𝑖} , where subscript 𝑖 indexes over individual features (e.g.,

pixels). The blank manipulation has empty ER, 𝜑∅ = ∅.

For (𝑥, ̂︀𝑦) ∼ P𝑋,̂︀𝑌 , we choose a manipulation 𝑚𝑙 from ℳ according to ̂︀𝑦 and mod-
ify the input as ̂︀𝑥 = 𝑞(𝑚𝑙, 𝑥). The label-dependent choice can be deterministic or
stochastic. We denote the new data distribution as P ̂︀𝑋,̂︀𝑌 . With appropriate choice of
manipulation, P ̂︀𝑋,̂︀𝑌 can satisfy ̂︀𝑝 * .

= sup̂︀𝑥,̂︀𝑦 P̂︀𝑌 | ̂︀𝑋(̂︀𝑦|̂︀𝑥) > 𝑝*. For example, ̂︀𝑝 * = 1 is
achievable when a watermark is applied exclusively to the positive class.

Whenever a model trained on ( ̂︀𝒳 , ̂︀𝒴) achieves expected accuracy 𝑝(3) > 𝑝*, it is guar-
anteed to rely on the knowledge of manipulation, which is solely confined within the
joint effective region 𝜑∪(𝑥)

.
= ∪𝑙 𝜑𝑙(𝑥). This gives us a straightforward, quantita-

tive check for feature attribution methods: they should recognize the contribution
inside 𝜑∪(𝑥). For our example, since only the watermark is applied to one class, 𝜑∪

corresponds to the watermarked region.

On finite test sets, a classifier can achieve an accuracy 𝑝 > 𝑝* without using the
manipulation, due to stochasticity in label reassignment. However, for test set size 𝑁 ,
the probability of this classifier achieving of 𝑝 or higher, when the expected accuracy
is bounded by 𝑝*, is at most

∑︀𝑁
𝑛=⌊𝑝𝑁⌋ Binom(𝑛;𝑁, 𝑝*), which vanishes quickly with

increasing 𝑁 and 𝑝.

Remark It is crucial to consider the joint effective region over all manipulations for
attribution values, since a model could use the absence of manipulation as a legitimate
basis for decision. For example, consider an image dataset, with each image having a
watermark either on the top or bottom edge correlated with the positive or negative
label respectively. A model could make negative predictions based on the absence of
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a watermark on the top edge. In this case, the correct attribution to the top edge is
within the joint ER but not within the bottom watermark ER. Current evaluations
[2, 167] often omit this possibility by using the ER of only the manipulation applied
to the target class rather than the union of all possible ERs for every class, potentially
rejecting correct attributions.

4.5 Experiments

We experimentally compare attribution values of three types of models – saliency
maps, attention mechanisms and rationale models – to those expected by the desider-
ata. Through the analysis, we identify their deficiencies and give recommendations
for improvements.

4.5.1 Evaluating Image Saliency Maps

For these experiments, we simulate a common scenario where a model seemingly
achieves “superhuman” performance on some hard image classification task, only for
us to later find out that it exploits some image artifacts which are accidentally leaked
in during the data collection process. We evaluate the extent to which several different
saliency map attribution methods can identify such artifacts.
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Figure 4-3: Top: Dataset samples and test set confusion matrix of a ResNet-34 model.
Bottom: Examples of five different saliency maps for a correct prediction (Fish Crow).
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Model: We used the ResNet-34 architecture [62] for all experiments. The parameters
are randomly initialized rather than pre-trained on ImageNet [37].

Dataset: We curate our own dataset on bird species identification. First, we train
a ResNet-34 model on CUB-200-2011 [159] and identify the top four most confusing
class pairs. Then, we scrape Flickr for 1,200 new images per class, center-crop all
images to 224 × 224 and mean-variance normalize using ImageNet statistics. Last,
we split the 1,200 images per class into train/validation/test sets of 1000/100/100
images. Figure 4-3 presents sample images, the confusion matrix for a ResNet-34
model trained on this data, and example saliency maps for a correct prediction.
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Figure 4-4: Different manipulations and their effective regions (gray).

Input Manipulations We consider five image manipulation types. These manipu-
lations are designed to simulate possible image artifacts, which an undesirable model
may rely on to make decisions. Each manipulation has parameters which define the
effective region and the visibility level of the manipulation effect. Some of the ma-
nipulation effects are technically stochastic, such as a watermark being placed in a
random position, but the effective region captures the localized manipulation effect of
all possible random instantiations. The five manipulations are described below, with
examples of each manipulation and their associated effective regions shown in Figure
4-4.
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• Peripheral blurring applies a Gaussian filter to the part of the image outside of
a certain radius. It is parametrized by

– the radius of the unaffected part; and

– the standard deviation of the Gaussian blurring filter.

Blurring could be due to either camera in motion or artistic post-processing to
highlight the main subject of the image.

• Central brightness shift gradually changes the brightness in the hue-saturation-
brightness (HSB) space inside a certain radius, with maximal change in the center.
For our experiments, the brightness change is negative, meaning that the center is
dimmed. It is parametrized by

– the radius of the dimmed region; and

– the magnitude of the brightness shift at the center.

Brightness shift could be due to times of the day, or the use of artificial light to
illuminate the subject.

• Striped hue shift modifies the hue (i.e., color) value of a vertical stripe in the
image. From top to bottom in the stripe, the hue value is first increased and then
decreased in a sinusoidal pattern. It is parametrized by

– the upper position of the stripe;

– the lower position of the stripe; and

– the magnitude of sinusoidal pattern.

Hue shift could be due to errors in conversion of different color space encodings,
which may result in color loss or distortion.

• Striped noise randomly changes pixels inside a vertical stripe to a uniformly
random RGB value. It is parametrized by

– the upper position of the stripe;

– the lower position of the stripe; and

– the probability that each pixel is replaced.

Pixel noise could be due to lossy compression or data loss during transmission.

• Watermark overlays a text reading “IMGxxxx”, where “xxxx” are four random
digits, to a random location inside a rectangular region. “IMG” is written in white
and the digits are written in black. It is parametrized by

– the upper-left coordinate of the rectangular region;
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– the lower-right coordinate of the rectangular region; and

– the font size of the watermark text.

Watermark is a commonly employed technique to attribute the author/organization
of the image.

Normally, none of them should be expected to correlate with the label. However,
especially with image scraping on the web and crowdsourced dataset construction, it
is possible that some spurious correlations leak into the final dataset.

Experiments We set up binary classifications with pairs of easily confused species
(e.g., common tern and Forester’s tern) to simulate a hard task which is made easier
through the presence of artifacts. Section 4.5.1 also uses pairs of visually distinct
species (e.g., common tern and fish crow). We evaluate 5 saliency map methods:
Gradient [142], SmoothGrad [143], GradCAM [138], LIME [128], and SHAP [99] as
introduced in Chapter 2.

Metric We study the attribution percentage assigned to the joint effective region
Attr%(𝜑∪). We calculate %Attr for images in the test set, and report the average
separately for images of the two classes.

Attr% by Attributions and Manipulations

Question How well do saliency maps attribute on ground truth features?

Setup We train 100 models, each on a random pair of similar species and a random
manipulation type. We reassign labels with 𝑟 = 0.5 (i.e., totally randomly), and
apply the manipulation to images of the positive post-reassignment class, leaving the
negative class images unchanged.

Expectation With 𝑟 = 0.5, only the manipulation is correlated with the label. A
near-perfect performance indicates that the model relies almost exclusively on features
inside 𝜑∪. Thus, we should expect Attr%(𝐹𝜑∪) ≈ 1.0, regardless of the size of 𝜑∪.

Results 70% of all runs achieve test accuracy of over 95%1. We compute Attr%(𝐹𝜑∪)

for these models. Since %Attr naturally depends on the size of 𝜑∪ (e.g., 𝜑∪ of the

1Note that since the model is not 100% accurate, it could be “distracted” by features outside
of 𝐹𝐶 . However, such distraction is small, accounting for at most 5% of errors, and it is much
more important for users to understand that the over 95% accuracy comes solely from 𝐹𝐶 , and thus
requiring Attr% ≈ 1 is reasonable.
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entire image implies Attr% = 1), we plot them against %ER, defined as the size of
𝜑∪ as a fraction of image size. Figure 4-5 shows these two values for some methods
and manipulations (complete results in Appendix 4.7.1).
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Figure 4-5: %Attr (𝑦-axis) vs. %ER (𝑥-axis), complete results in Figure 4-14 of
Appendix 4.7.1. Blue circles and orange crosses are for images with and without the
manipulation. Green horizontal line indicates the saliency map with Attr% = 1 and
red diagonal line indicates a random saliency map.

The models successfully learn all manipulation types, as demonstrated by the high
test accuracy. However, none of the methods consistently scores %Attr ≈ 1. Further,
not all manipulations are equally well detected by all saliency maps. While SHAP
performs the best (%Attr = 69% at %ER = 40% on average), it is still hard to trust
“in the wild” since its efficacy strongly depends on manipulation type. The presence
of a watermark is often better detected than its absence, likely because the model
implicitly localizes objects (i.e., the watermark) [17] and predicts a default negative
class if it fails to do so. It is also easier for perturbation-based methods such as
LIME to “hide” it when present than to “construct” it when absent. Thus, saliency
maps may mislead people about the true reason for a negative prediction, and better
methods to convey the absence of signals are needed.

Attribution vs. Test Accuracy

Question How does %Attr change as with model’s test accuracy during training?

Setup We use the the same setup as Section 4.5.1.

Expectation As the test accuracy increases, the model must also increasingly rely
on knowledge of manipulation. As a result, we should expect Attr%(𝐹𝜑∪) to increase.

Results For the training run of each model, we compute Attr%(𝐹𝜑∪) for models dur-
ing intermediate epochs with various test accuracy scores. Figure 4-6 plots the lines
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representing the progress of %Attr vs. test accuracy (complete results in Appendix
4.7.1). SHAP with watermark shows the most consistent and expected increase in
%Attr with test accuracy. For other saliency maps and feature types, the trend is
very mild or noisy, suggesting that the attribution method fails to recognize model’s
increasing reliance on the manipulation in making increasingly accurate predictions.
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Figure 4-6: %Attr (𝑦-axis) vs. test accuracy (𝑥-axis), more in Appendix 4.7.1.

Attribution vs. Manipulation Visibility

Question How well do saliency maps recognize manipulations of different visibility?

Setup We conduct 100 runs, with 20 per manipulation. We further group the 20
runs into 4 groups, with 5 runs in a group using the same manipulation type and
effective region but varying degrees of visibility.

We define the five visibility levels for each manipulation type as below. For fair
comparison of %Attr at different visibility levels, it is crucial that the effective regions
are independent of the visibility, which is satisfied in all manipulation types below.

• Blurring: The visibility level is defined as the Gaussian blur standard deviation,
with values of {2, 4, 6, 8, 10} pixels, from least visible to most.

• Brightness: The visibility level is defined as the magnitude of the brightness
shift, with values of {0.1, 0.15, 0.2, 0.25, 0.3} brightness component of the color (in
the range of [0, 1]), from least visible to most.

• Hue: The visibility is defined as the magnitude of the hue shift, with values of
{0.05, 0.1, 0.15, 0.2, 0.25} hue component of the color (in the range of [0, 1]), from
least visible to most.

• Noise: The visibility is defined as the probability that a pixel is replaced by a
random value, with values of {0.02, 0.04, 0.06, 0.08, 0.1}, from least visible to most.
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• Watermark: The visibility is defined as the font size of the watermark, with
values of {7, 9, 11, 13, 15} pixels, from least visible to most.

As before, the labels are reassigned with 𝑟 = 0.5 and manipulations applied to the
positive class only.

Expectation A good saliency map should not be affected by manipulation visibility,
as long as the model is objectively using it. However, different saliency maps may be
better suited to detect more or less visible manipulations. For example, a less visible
manipulation may be ignored by the segmentation algorithm used by LIME, while
inducing sharper gradients in the decision space.
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Figure 4-7: %Attr (𝑦-axis) vs. feature visibility (𝑥-axis), more in Appendix 4.7.1.

Results Figure 4-7 (left) plots each group of five runs as a line, with visibility level
on the 𝑥-axis and %Attr on the 𝑦-axis (complete results in Appendix 4.7.1). Except for
SHAP on watermark, other methods do not show consistent trend of %Attr increasing
with visibility. While SHAP is more effective on more visible manipulations, we rely
most on interpretability methods to uncover precisely the less visible manipulations
or artifacts. Unfortunately, none of the methods could satisfy this requirement.

Attribution vs. Original Feature Correlation

Question How does the attribution on the manipulation change if the reassigned
labels are correlated with the original labels (and thus original input features) to
higher or lower degrees (i.e., 𝑟 ∈ [0.5, 1.0])?

Setup For each manipulation, we vary the label reassignment parameter 𝑟 ∈ {0.5,
0.6, 0.7, 0.8, 0.9, 1.0}. For each 𝑟, we train four models on four class pairs: two of
similar species (e.g., class 4 vs. 5 in Figure 4-3) and two of distinct ones (e.g., class
5 vs. 6), for a total of 5× 6× 4 = 120 runs.

65



Expectation For 𝑟 > 0.5, there is no standard definition of the attribution value on
the original image features and the manipulations, as any decreasing trend of %Attr

with increasing 𝑟 is reasonable. However, the Shapley value [133] is a commonly used
axiomatic definition for feature attributions. We denote the set of features inside the
effective region as 𝐹𝑀 , for manipulated features, and that outside as 𝐹𝑂, for original
features. Their Shapley values on performance 𝑣(𝐹𝑀) and 𝑣(𝐹𝑂) are defined as

𝑣(𝐹𝑀) = 1
2
[𝑎(𝐹𝑀)−𝑎(∅)+𝑎(𝐹𝑀 ∪ 𝐹𝑂)−𝑎(𝐹𝑂)] , (4.1)

𝑣(𝐹𝑂) =
1
2
[𝑎(𝐹𝑂)−𝑎(∅)+𝑎(𝐹𝑀 ∪ 𝐹𝑂)−𝑎(𝐹𝑀)] , (4.2)

where 𝑎(𝐹𝑀), 𝑎(𝐹𝑂), 𝑎(∅), and 𝑎(𝐹𝑀 ∪𝐹𝑂) refers to the classifier’s expected accuracy
when only 𝐹𝑀 , only 𝐹𝑂, neither, and both are available, respectively. Note that this
value should not be calculated as the model accuracy on images with every pixel but
𝐹 being blacked out, because such images are out of distribution where the model
may exhibit unreasonable behaviors (cf. discussion by Hooker et al. [67]).

Instead, the suppression of information beyond 𝐹 can be understood as an inability for
the model to distinguish inputs that agree on 𝐹 . This leads to the following process of
simulating such a prediction. First, let P𝑋,𝑌 |𝐹=𝑓 be the data distribution conditioned
on 𝐹 = 𝑓 . Since all features other than 𝐹 are suppressed, the model cannot further
distinguish two inputs 𝑥, 𝑥′ ∼ P𝑋|𝐹=𝑓 . As a result, the expected accuracy can be
computed by comparing the model’s prediction on 𝑥 against the ground truth label
on 𝑥′. Then we take the expectation of this accuracy according to different values
of 𝑓 ∼ P𝐹 , where P𝐹 is the marginal distribution of 𝐹 . Formally, for the model
prediction function 𝑔 : 𝒳 → 𝒴 , we have

𝑎(𝐹 ) = E𝑓∼P𝐹

[︁
E𝑥,𝑦∼P𝑋,𝑌 |𝐹=𝑓

[︁
E𝑥′,𝑦′∼𝒫𝑋,𝑌 |𝐹=𝑓

[︀
1𝑔(𝑥)=𝑦′

]︀]︁]︁
. (4.3)

With balanced label distribution, 𝑎(∅) means that the model has no information
about the input, and thus the accuracy is 0.5. On the other hand, 𝑎(𝐹𝑀 ∪𝐹𝑂) means
that the model has full access to the input, and thus the accuracy is the normal model
accuracy 𝑝. In addition, we have 𝑎(𝐹𝑂) ≤ 𝑟, because the label reassignment weakens
the correlation between 𝐹𝑂 and the label.

Finally and somewhat counter-intuitively, the above definition also implies that 𝑎(𝐹𝑀)

= 𝑎(𝐹𝑀 ∪ 𝐹𝑂) = 𝑝 for the following reason: since every 𝐹𝑀 = 𝑓𝑀 is perfectly
correlated with the label, all the data in P𝑋,𝑌 |𝐹𝑀=𝑓𝑀 have the same label and thus the
non-identifiability of any two inputs 𝑥 and 𝑥′ does not additionally degrade the model
performance. However, note that this result comes from the mechanical application of
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Shapley value calculation, which is a popular and axiomatic definition of attribution.
Whether it is reasonable in light of this implication is beyond the scope of the thesis.

Following the above procedure, we have that for a classifier with accuracy 𝑝, 𝑎(∅) =

0.5, 𝑎(𝐹𝑀) = 𝑎(𝐹𝑀 ∪ 𝐹𝑂) = 𝑝, and 𝑎(𝐹𝑂) ≤ 𝑚. We normalize the Shapley values to
𝑣(𝐹𝑀) and 𝑣(𝐹𝑂) by their sum 𝑣(𝐹𝑀) + 𝑣(𝐹𝑂).

It is easy to see that

𝑣(𝐹𝑀) ≥ (2𝑝− 𝑟 − 0.5)/(2𝑝− 1), (4.4)

𝑣(𝐹𝑂) ≤ (𝑟 − 0.5)/(2𝑝− 1). (4.5)

For (near-)perfect classifier with 𝑝 ≈ 1, we have 𝑣(𝐹𝑀) ≥ 1.5−𝑟, and 𝑣(𝐹𝑂) ≤ 𝑟−0.5.
In addition, 𝑎(𝐹𝑂) should be close to 𝑟 for the distinct pair as the model can better
utilize the more distinct original image features, resulting in lower attribution 𝑣(𝐹𝑀)

on manipulated features.

0.5 0.75 1

0
0.
5

1

SHAP
Watermark

0.5 0.75 1

Gradient
Watermark

0.5 0.75 1

SHAP
Brightness

0.5 0.75 1

Gradient
Hue

Figure 4-8: %Attr (𝑦-axis) vs. label reassignment parameter 𝑟 (𝑥-axis), more in
Appendix 4.7.1. Solid/dashed lines represent similar/distinct species pairs. Green
shades represent attribution range per Shapley axioms: %Attr ≥ 1.5− 𝑟.

Results All models achieve test accuracy of over 95%. Figure 4-8 (right) plots
%Attr vs. 𝑟 (complete results in Appendix 4.7.1). Solid lines represent runs with a
similar species pair, and dashed lines represent runs with a distinct species pair. The
green shaded area represents the area of 𝑣(𝐹𝑀) ≥ 1.5− 𝑟, the Shapley value range at
𝑝 = 1. In other words, the green shade represent values consistent with the Shapley
axioms. Intuitively, for 𝑟 close to 0.5, the correlation between 𝐹𝑂 and the label is
very weak, and the (near-)perfect model has to use 𝐹𝑀 for high performance, thus
%Attr close to 1. As 𝑟 increases, the model can choose to rely more heavily on the
more-correlating 𝐹𝑂 as well, resulting in larger allowable ranges of %Attr.

For watermark manipulation, SHAP shows clear decrease in attribution value as 𝑟

increases, while gradient also tracks the predicted range, but only for the positive
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class with the manipulation. This trend is not seen in other feature types, even for
SHAP which approximates the Shapley values. There does not seem to be a clear
difference in attribution values for similar vs. distinct species pairs either. Given that
the set of Shapley axioms is commonly accepted as reasonable, it is concerning that
many saliency maps are inconsistent with it, and important to better understand the
underlying axiomatic assumptions (if any) made by each of them.

Discussion

Arguably one of the most important application of model explanation is to detect
any usage of spurious correlations, but our results cast doubt on this capability from
various aspects. We recommend that, before analyzing the actual model, developers
should first train models that are guaranteed to use certain known features, and “dry
run” the planned interpretability methods on them to make sure that these features
are indeed highlighted.

4.5.2 Evaluating Text Attentions

It is known that certain non-semantic features can heavily influence model prediction,
such as the email headers [128]. Plausibly, attention scores should highlight such
features, and we rigorously test this with our dataset modification in this section.

Model The attention architecture follows the one used by Wiegreffe and Pinter
[162] closely. First, a sentence of 𝐿 words (𝑤1, ..., 𝑤𝐿) is converted to a list of 200-
dimensional embeddings (v1, ...,v𝐿). We use the same embedding data as Lei et al.
[94] and Bastings et al. [15]. Then, a Bi-LSTM network builds contextual representa-
tions for these words h1, ...h𝐿, where h𝑖 ∈ R400 is the concatenation of the forward and
the backward hidden states, each of 200 dimensions. Finally, the attention mechanism
computes the sentence representation as

k𝑖 = tanh(Linear(h𝑖)) ∈ R200, (4.6)

𝑏𝑖 = q · k𝑖 (4.7)

𝑎1, ..., 𝑎𝐿 = softmax(𝑏1, ..., 𝑏𝐿), (4.8)

h =
𝐿∑︁
𝑖=1

𝑎𝑖h𝑖, (4.9)

where Linear() represents a linear layer with learned parameters, q ∈ R200 is a learned
query vector applied to every sentence, and 𝑎1, ..., 𝑎𝐿 are the attention weights for
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𝑤1, ..., 𝑤𝐿. Finally, a linear layer computes the 2-dimensional logit vector for model
prediction.

Dataset We modify the BeerAdvocate dataset [104] and further select 12,000 re-
views split into train, validation, and test sets of sizes 10,000, 1,000 and 1,000 (shuffled
differently for each experiment).

Metric The introduced manipulation changes specific words according to the reas-
signed label. The metric is %Attr defined on the target words (i.e., effective region).

Highly Obvious Correlating Features

Question How well can attention scores focus on highly obvious manipulations?

Setup From our filtered dataset, we first randomly assign binary labels. For the
positive reviews, we change all the article words (a / an / the) to “the”, and for the
negative reviews, we change these to “a”. Thus, only these articles are correlated with
the labels and constitute the effective region.

Expectation Attention of (near-)perfect models should have %Attr ≈ 1.

Results The model achieves over 97% accuracy. Across the test set, %Attr on
article words is 8.6%. Considering that articles are 7.9% of all words, this is better
than random, albeit barely. Figure 4-9 visualizes the attention distribution for two
reviews, with additional results in Figure 4-18 of Appendix 4.7.2. Each bars represent
weights of words in the review. Green and orange bars represent non-articles and
articles respectively. As we can see, the attention on article words either does not
stand out from the rest, or at most only locally, relative to their neighbors. Generally,
there is no strong correlation between high attention values and important words.

Misleading Non-Correlating Features

Question When some features are known to not correlate with the label but are
very similar to correlating ones, do attention scores also focus on the former?

Setup Again from our filtered dataset, we apply two similar manipulations, with
only one of them is correlated with the (reassigned) label. Figure 4-10 details the
construction of two datasets, CN and NC.

69



Word

At
te

nt
io

n 
Va

lu
e

Figure 4-9: Attention scores for words in two reviews, with more in Appendix 4.7.2.
Orange and green bars represent articles and non-articles, respectively.

  

Figure 4-10: The process to build CN dataset for the experiment in Section 4.5.3.
First, a review is split into two halves at the midpoint, shown in bold and italics.
Then a label is randomly sampled and assigned to the review. Depending on the label,
the articles in the first half are changed to “a” or “the”. They are called correlating
articles. Then an article word is randomly chosen for the second half, and all articles
in the second half are changed to that word. They are called non-correlating articles.
For NC dataset, the roles of two halves are switched.

Expectation Same as above. Non-correlating articles should not be attended to.

Results The models on both datasets achieve over 97% accuracy. Figure 4-11
presents attention visualization, with more in Figure 4-19 of Appendix 4.7.2. The two
models show very different behaviors. The CN model exclusively focuses attention on
correlating articles, while the NC model behaves similarly to the previous experiment.

Observing the large variation of behaviors, we further trained the three models ten
more times to see if any consistent attention pattern exists. All models achieve over
97% accuracy. Figure 4.1 (left) presents the mean and standard deviation statistics
for the 11 runs. The clean attention pattern by the CN model does not persist, and
the model sometimes assigns higher than random weights on non-correlating articles,
especially for the 𝑁𝐶 dataset. These results further suggests that attention weights
cannot be readily and reliably interpreted as attributions without further validation.
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Dataset Corr. Articles Non-Corr. Articles Other Words
Article 10.3%± 2.4% | 7.9% NA 89.7%± 2.4% | 92.1%
CN 15.9%± 25.7% | 4.1% 5.9%± 4.0% | 3.8% 78.2%± 24.7% | 92.1%
NC 12.0%± 8.4% | 3.8% 12.6%± 9.3% | 4.1% 75.4%± 16.7% | 92.1%

Table 4.1: Attention attribution statistics across 11 training runs (format:
mean(%Attr) ± stdev(%Attr) | word frequency). The “Article” dataset is the one
used in Section 4.5.2.

Discussion

Attention is undoubtedly useful as a building block in neural networks, but their in-
terpretation as attribution is disputed. Due to the lack of ground truth information on
word-prediction correlation, past studies proposed various, and sometimes conflicting,
criteria for judging the validity of attribution interpretation [75, 122, 162]. However,
the fundamental correctness of such proxy metrics is unclear. In our studies, we find
that attentions can hardly be interpreted as attribution for model understanding and
debugging purposes: for most training runs, the attention weights on correlating fea-
tures at best stand out only locally, easily overwhelmed by larger global variations,
settling the debate at least on the modified dataset. For natural datasets, we would
unavoidably need to rely on proxy metrics, but we recommend future proposals of
the metrics to be first calibrated with ground truth in a controlled setting.

4.5.3 Evaluating Text Rationales

In this section, we evaluate rationale models with the same two experiments above
(and omit the Question and Setup descriptions). We consider two variants: a re-
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Figure 4-11: Attention scores for one review in CN (top) and NC (bottom) dataset,
with more in Appendix 4.7.2. Orange, blue, and green bars represent correlating
articles, non-correlating articles, and other words, respectively.
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inforcement learning (RL) model [94] and a continuous relaxation (CR) model [15].
In the original forms, both models regularize the rationale length and continuity. In
our experiments, rather than regularizing the length, we train the models to produce
rationales that match a target selection rate %Sel. For a mini-batch of 𝐵 examples,
we use 𝜆 ·

⃒⃒⃒∑︀𝐵
𝑖=1 len(rationale𝑖)/

∑︀𝐵
𝑖=1 len(review𝑖)− Sel%

⃒⃒⃒
, where 𝜆 > 0 is the regu-

larization strength. Incidentally, we found that the training is much more stable with
this regularization, especially for the RL model. We also removed the discontinuity
penalty, because ground truth rationales in our experiments are not continuous. We
use precision and recall metrics as defined in Section 4.3.

Highly Obvious Manipulations

Expectation A necessary condition for a non-misleading rationale is that it should
include at least one article word, regardless of selection rate. However, a desirable
property of rationale is comprehensiveness [168]: selecting as many article words as
possible. Thus, a good rationale model should have high precision when selection rate
is low and high recall when selection rate is high.

Results We train models with %Sel ∈ {0.07, 0.09, 0.11, 0.13, 0.15}, all with over
97% accuracy. We evaluate precision and recall of the trained models and plot them
in Figure 4-12 (top) according to the actual rationale selection rate, %Sel, on the test
set. Blue and orange markers are for the RL and CR models respectively. The two
green lines show two optimality notions: the solid line enforces aggregate %Sel for
the test set, and the dashed line enforces %Sel per review.

Except for the CR model at the lowest %Sel, all others achieve near-perfect rationale
selection on both the precision and and the recall metrics. In particular, they are
nearly dataset-wide optimal, due to %Sel regularization done at the mini-batch level.
The “faulty” CR model tends to select the first few words consistently, as shown in
Figure 4-12 (bottom) and Appendix 4.7.3, but still selects some article words.

Misleading Non-Correlating Features

Expectation Similar to the previous experiment, at least one correlating article
word needs to be selected. However, selection of non-correlating articles is arguably
more misleading than selection of other non-article words, because it suggests that
these non-correlating articles also influence the prediction, even though the classifier
simply ignores them.

Results: We train models with %Sel ∈ {0.03, 0.05, 0.07, 0.09}, all with over 97%
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enjoyed @ la cave the bulles ; simon & the head brewer of brasserie de vines
hosted the tasting on 11/5 . medium body , frothy mouth-feel , nice carbonation .
nice fruity notes upfront , green apples and citrus , with the hint of sourness . fin-
ishes with the fresh piney hop presence and the mild bitterness . overall ; great di-
versity in flavors , very fresh tasting .

Figure 4-12: Top: Precision and recall for two rationale models in Section 4.5.3. Bot-
tom: A rationale pattern by the “faulty” CR model, selected non-articles in orange
bold italics , selected articles in green bold, and missed articles in red italics , more
in Appendix 4.7.3.

accuracy. Figure 4-13 (top) plots the precision of correlating articles for the two
datasets, as well as the dataset-wide optimal value. We found the rationales consist
of almost exclusively article words. However, especially for the RL model, some corre-
lating articles are missed but non-correlating ones are selected, resulting in markedly
less than optimal precision. Figure 4-13 (bottom) shows one example for the RL
model and additional ones are in Appendix 4.7.3.

Discussion

The structure of rationale models guarantees that causal relationship between the
rationale features and the model prediction, but this does not necessarily imply its
usefulness to model understanding. Specifically, it could highlight 𝐹𝐶 only barely,
while including lots of non-correlating 𝐹𝑁 (and, in particular, misleading words such
as the non-correlating articles)2. Indeed, our results show that rationale methods are
prone to selecting misleading non-correlating features, which obfuscates the model’s
reasoning process by giving more but unnecessary information to the human. The
problem is more severe with RL training, possibly due to the known difficulty with
REINFORCE [163]. Post-processing methods could be developed to further prune
rationales to mitigate this problem.

2There are additional concerns on the unfaithfulness of rationales as Trojan explanations [74, 172],
but they were not identified in our experiments.

73



0 0.03 0.06 0.09
%Sel

0.
5

0.
75

1.
0

Pr
ec

isi
on

CN Dataset

0 0.03 0.06 0.09
%Sel

NC Dataset

enjoyed @ la cave the bulles ; simon & the head brewer of brasserie de vines hosted
the tasting on 11/5 . medium body , frothy mouth-feel , nice carbonation . nice
fruity notes upfront , green apples and citrus , with a hint of sourness . finishes with
a fresh piney hop presence and a mild bitterness . overall ; great diversity in flavors
, very fresh tasting .

Figure 4-13: Top: Precision at different %Sel for models in Section 4.5.3. RL model is
in blue and CR in orange. The solid and dashed green lines show optimal metric values
when %Sel is enforced at dataset- and sentence-level. Bottom: A rationale selection
on the NC dataset, correlating articles in green bold and non-correlating articles in
red italics , more in Appendix 4.7.3.

4.6 Discussion

As interpretability methods, especially feature attribution ones, are increasingly de-
ployed for quality assurance of high-stakes systems, it is crucial to ensure these meth-
ods work correctly. Current evaluations fall short – primarily due to a lack of clearly
defined ground truth. Rather than evaluating explanations for models trained on nat-
ural datasets, we propose “unit tests” to assess whether feature attribution methods
are able to uncover ground truth model reasoning on carefully-modified, semi-natural
datasets. Surprisingly, none of our evaluated methods across vision and text domains
achieve totally satisfactory performance, and we point out various future directions
in Section 4.5.1, 4.5.2 and 4.5.3 to improve attribution methods.

Our dataset modification procedure closely parallels the setup for identifying and de-
bugging model reliance on spurious correlations, which have been known to frequently
affect model decisions [e.g. 47, 72, 80, 128]. Hence, the mostly negative conclusions
cast doubt on this use case of interpretability methods.

An extension of the proposed evaluation procedure is to move beyond “artifact” fea-
tures, which result from the manual definition of the manipulation function. Given
the recent advances on generative modeling such as image inpainting [120] and masked
language prediction [38], more realistic features could be generated, perhaps also con-
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ditioned on or guided by semantic concepts. This would make the modified dataset
much more realistic looking, and thus better simulate another intended use case of
interpretability: assisting scientific discovery, in which high-performing models teach
humans about features of previous unknown importance.

4.7 Appendix

4.7.1 Image Saliency Map Evaluations

Figure 4-14 shows %Attr vs. %ER for all pairs of saliency maps and manipulations.
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Figure 4-14: %Attr (𝑦-axis) vs. %ER (𝑥-axis) for all pairs of saliency maps and
manipulations.
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Figure 4-15 shows %Attr vs. test accuracy for all pairs of saliency maps and manip-
ulations.
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Figure 4-15: %Attr (𝑦-axis) vs. test accuracy (𝑥-axis) for all pairs of saliency maps
and manipulations.
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Figure 4-16 shows %Attr vs. manipulation visibility for all pairs of saliency maps and
manipulations.
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Figure 4-16: %Attr (𝑦-axis) vs. manipulation visibility (𝑥-axis) for all pairs of saliency
maps and manipulations.
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Figure 4-17 shows %Attr vs. the label reassignment parameter 𝑟 for all pairs of
saliency maps and manipulations.
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Figure 4-17: %Attr (𝑦-axis) vs. label reassignment parameter 𝑟 (𝑥-axis) for all pairs
of saliency maps and manipulations.
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4.7.2 Attention Mechanism Evaluations

Figure 4-18 presents additional visualizations of the learned attention distribution on
the dataset modified with article word spurious correlation.

Figure 4-18: Additional attention visualizations on the review dataset. Orange and
green bars represent articles and non-articles respectively.

Figure 4-19 presents additional visualizations of the learned attention distribution on
the CN (left) and NC (right) datasets.

Figure 4-19: Additional attention visualizations on the CN (left) and NC (right)
datasets. Orange, blue and green bars represent correlating articles, non-correlating
articles and other words respectively.
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4.7.3 Rationale Model Evaluations

Highly Obvious Manipulations

Figure 4-20 presents four additional reviews annotated by the “faulty” CR model
showing that it consistently selects the first few words of the review.

pours a clear yellow . 1/4 inch head of
a white color . slight retention and slight
lacing . smells of sweet malt , pale malt
, fruit , and slight bread aroma . fits a
style of a belgian pale ale . mouth feel is
smooth and crisp with a high carbonation
level . tastes of pale malt , yeast cleanliness
, slight hops , and very slight fruit . overall
, a decent brew but nothing special .

bottle to snifter glass . pitch black with
little lacing around edge . smells like the
typical oatmeal stout . taste has the great
balance between both milk and oatmeal .
sweet from the sugars and mild dark choco-
late in the after taste . smooth and chewey
. leans to the heavier side in the mouth
. great example of two styles blended .
worth seeking .

12oz can poured into pint glass . pours
the pale golden straw color with the 2 fin-
ger fizzy head that settles quickly . slightly
hazy when held to the light . smell is fairly
nuetral with the bit of sweet malts com-
ing through . the slight scent of something
metallic . taste is decent . nothing crazy or
unique but extremely clean , classic ameri-
can pale lager flavor . mild light malt flavor
with just enough hops for balance . no ma-
jor off-flavors here . mouthfeel is fluid and
crisp . this went down quickly and i am
not the fizzy yellow beer fan . for what it
is , it ’s done well .

a- dark brown with hints of amber at
a edges , small head which disappeared
quickly and dissipated into a few sad bub-
bles . s- tons of sweet bourbon booze .
raisins , sugared malts , dark chocolate
filled with raspberry . t- booze and brown
sugared malts mingle with one another .
this is drinking like a barleywine to me .
lots of wood and oak flavor drenched in
booze . m- smooth creamy with enough
carbonation . d- it ’s a delicious brew that
needs to be savored one of a best if not a
best scotch ales ive had .

Figure 4-20: Four additional reviews annotated by the “faulty” continuous relaxation
model that consistently selects the first few words regardless. Selected non-articles
in orange bold italics , selected articles in green bold, and missed articles in red
italics .
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Misleading Non-Correlating Features

Figure 4-21 shows rationale selections by the two models for the same review at the
same target %Sel.

CN Dataset NC Dataset

C
R

M
od

el

enjoyed @ la cave a bulles ; simon & a
head brewer of brasserie de vines hosted a
tasting on 11/5 . medium body , frothy
mouth-feel , nice carbonation . nice fruity
notes upfront , green apples and citrus ,
with the hint of sourness . finishes with
the fresh piney hop presence and the mild
bitterness . overall ; great diversity in fla-
vors , very fresh tasting .

enjoyed @ la cave the bulles ; simon & the
head brewer of brasserie de vines hosted
the tasting on 11/5 . medium body , frothy
mouth-feel , nice carbonation . nice fruity
notes upfront , green apples and citrus ,
with a hint of sourness . finishes with a
fresh piney hop presence and a mild bit-
terness . overall ; great diversity in flavors
, very fresh tasting .

R
L

M
od

el

enjoyed @ la cave a bulles ; simon & a
head brewer of brasserie de vines hosted a
tasting on 11/5 . medium body , frothy
mouth-feel , nice carbonation . nice fruity
notes upfront , green apples and citrus ,
with the hint of sourness . finishes with
the fresh piney hop presence and the mild
bitterness . overall ; great diversity in fla-
vors , very fresh tasting .

enjoyed @ la cave the bulles ; simon & the
head brewer of brasserie de vines hosted
the tasting on 11/5 . medium body , frothy
mouth-feel , nice carbonation . nice fruity
notes upfront , green apples and citrus ,
with a hint of sourness . finishes with a
fresh piney hop presence and a mild bit-
terness . overall ; great diversity in flavors
, very fresh tasting .

Figure 4-21: Additional rationale annotations on the CN and NC datasets by the
two models. Selected words are underlined. Ground truth correlating articles are in
green bold, and non-correlating articles in red italics . The CR model performs well
on this review, focusing exclusively on correlating articles, while the RL model selects
non-correlating articles, and misses a correlating one for the NC dataset.
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Chapter 5

Understandability of Model
Explanations

5.1 Introduction

The previous chapter highlights the importance of correctness evaluation. Without it,
for instance, we risk being misled by explanations into believing that models exploiting
spurious correlations are instead working correctly. However, is correctness the sole
desideratum that we should aim for?

In this chapter, we argue negatively. As a simple example, consider perhaps an
atypical explanation: the computation trace. For an input, the computation trace
explanation is defined as the sequence of addition, multiplication and exponentiation
operations that the model implements to compute the prediction. For a linear re-
gression model on an input of 𝐷 feature dimensions, there are 2𝐷 operations: each
feature is first multiplied by the weight with 𝐷 multiplications, and the results are
summed up with the bias term, using 𝐷 additions. Similarly, the computation done
by a deep neural network can also be represented by a sequence of such operations,
just much longer. It is clear that this computation trace is 100% correct, in that the
exact prediction is recovered by following the trace. However, it is rarely, if ever,
considered as a model explanation. The reason is that this trace is as hard to un-
derstand as the original model parameters and it is essentially impossible to derive

This chapter is based on the NAACL 2022 paper “ExSum: From Local Explanations to Model
Understanding” by Yilun Zhou, Marco Tulio Ribeiro and Julie Shah [183].
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more general and high-level model understanding, such as whether the model is using
spurious correlations or is discriminative on certain demographic factors.

From a more practical and utilitarian perspective, as discussed at the end of Chap-
ter 3, explanations are ultimately used by people for making various decisions. Thus,
explanations that cannot be understood (e.g., the computation trace) by human con-
sumers are unhelpful, as are those that are misunderstood.

Input: As shaky as the plot 
is , Kaufman 's script is 
still memorable for some 
great one-liners .
Label: Positive

Fine-tuned 
RoBERTa

Prediction: Positive

SHAP Explanation 
memorable:   0.48
great: 0.37
for:        -0.02
one-liners: -0.14
shaky:      -0.39

Model correctly predicts all 
positive inputs

Model correctly recognizes 
the high contribution of all 
highly positive words and 
ignores all stop words

if sentiment(w) ≥ 
  sentiment(“memorable”):
    (covers 1.6% of all words)
then saliency(w) ≥ 0.48
    (correct 3.1% of time)
then saliency(w) ≥ -0.01
    (correct 90.4% of time)

True
Pred Neg Pos

Neg 854 58

Pos 22 887

✔

✔

✗

✗

Current 
Practice

A
B

C1 D1

E1

C2

D2

E2

Figure 5-1: An analogy between understanding model prediction (top route) and
model explanation (bottom route). A test input (A) is fed into a fine-tuned RoBERTa
model (B), which generates a correct prediction (C1) and reasonable explanation
(C2). While generalized claims of understanding model performance (D1) are made
rigorously from quantitative statistics such as the test set confusion matrix (E1) ,
claims of understanding model behavior (D2) are predominantly derived informally
from one or few explanations (C2). In this chapter, we argue the necessity of formal-
izing this process, and propose the explanation summary (ExSum) framework (E2),
which reveals the severe limitations of the ad hoc model understanding (D2).

Consider the sentiment classification task shown in Figure 5-1. On a test input, the
model makes the correct prediction of positive sentiment. Obviously, this evidence is
insufficient to conclude that “in general, the model classifies positive inputs correctly,”
because even a random-guess model is correct 50% of the time on a single instance.
Instead, statistics such as the confusion matrix serve to rigorously support (or refute)
generalization claims about model performance – for example, “the model is correct
97.6% of the time on positive inputs” – ensuring an accurate understanding of model
performance.

Do we understand model behaviors in the same rigorous way? Figure 5-1 shows that
the SHAP score [99] of the word “memorable” is highest at 0.48, while that of “for ”
is negligible at -0.02. Therefore, it is tempting to conclude that “in general, the
model recognizes the high positive contribution of highly positive words and ignores
stop words” – as expected for an accurate sentiment classifier. However, this is a
generalization from a single instance, and thus potentially unreliable. We need the
“confusion matrix” analogue for such claims, which to the best of our knowledge does
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not exist, making it hard to derive model understanding from local explanations.

We propose ExSum, a mathematical framework to formalize model understanding.
In ExSum, each piece of “model understanding” is specified precisely via a rule that
links inputs to attribution values. For example, the tentative understanding described
in the previous paragraph could be formalized as “words more positive than memo-
rable (as measured by the word sentiment score given in the dataset, e.g., flawless,
charming, etc) have SHAP attribution value in the [0.48, 1] range.” This precise
definition allows for quantitative evaluations. For example, this rule covers 1.6% of
all words in the corpus, and is only correct 3.1% of the time. For the rule to be 90%
correct, we need a wide and uninformative range of [-0.01, 1], indicating that a hasty
generalization from “memorable” is unwarranted. Similarly, a saliency range of [-0.05,
0.05] for stop words is only correct 64% of the time: over 1/3 of stop words have non-
negligible saliency – an understanding that is easily available with ExSum, but might
be missed with informal explanation inspection. We define metrics to establish the
quality profile of each rule and present a tool that makes it easy for users to construct
ExSum rules from local explanations. Finally, we demonstrate how ExSum reveals
the various drawbacks in the current practices of ad hoc model understanding, and
allows for better understanding of model behavior in two separate tasks.

5.2 On Generalized Model Understanding

Besides the practical example above, we start from first principles and argue that
generalized model understanding is the central concept for explanation usefulness.
Local explanations are mathematical descriptions (MD) of some aspect of model be-
havior, for specific inputs. For example, gradient saliency (in the embedding space)
is the sensitivity of the prediction to infinitesimal changes in the token embedding;
occlusion saliency is the prediction change if individual embeddings are zeroed out.
It is with these mathematical descriptions that people associate high-level interpre-
tations (HL) of model behavior, such as associating the above two metrics with word
importance. This (unconscious) train of thought can be described as follows:

𝑥→ MD→ HL.

Crucially, people rarely study MD or HL for one specific input, as explanations are
often used to understand broader model behaviors, such as reliance upon spurious
correlation, non-discrimination of a protected class, or usage of unknown scientific
principles. We elaborate upon these use cases in Appendix 5.9.1 to demonstrate that
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people implicitly or explicitly seek generalized model understanding. From another
perspective, analogous to why people ultimately focus on the generalization accuracy
of a model, they (should) focus on generalized model understanding derived from
local explanations.

For example, after observing that some highly polar words have high contribution
for a sentiment classification model, people conclude that all highly polar words have
high contribution. This process can be formalized as follows:

𝑥1 → MD1 → HL1

...

𝑥𝑛 → MD𝑛 → HL𝑛

⎫⎪⎪⎬⎪⎪⎭→ HL(g),

where HL(g) is the generalized high-level model understanding. This generalization is
too informal, not least because the step from MD𝑖 to HL𝑖 is itself already informal.
Alternatively, we propose to generalize at the MD level, as follows:

𝑥1 → MD1

...

𝑥𝑛 → MD𝑛

⎫⎪⎪⎬⎪⎪⎭→ MD(g) → HL(g).

Since MDs are rigorously defined mathematical quantities (e.g., the prediction of the
sentence drops by 32% after the embedding of “great” is zeroed out), we can define and
evaluate the quality of their generalization, and HL(g) can also include any failures
and anomalies. As each MD is a local explanation, we call MD(g) the explanation
summary (ExSum), and proceed by instantiating this principle for feature attribution
explanations.

5.3 The ExSum Framework

5.3.1 Setup and Notation

We focus on the classification setting, but all the ideas below can extend straightfor-
wardly to regression. We have an input space 𝒳 and output space 𝒴 = {1, ..., 𝐾}
of 𝐾 classes. A data point is an input-output pair 𝑑 = (𝑥, 𝑦) ∈ 𝒟 = 𝒳 × 𝒴 , dis-
tributed as P𝐷. We consider a model 𝑚 : 𝒳 → ∆𝐾−1 where 𝑚(𝑥) is the predicted
class distribution on the probability simplex.

Feature attribution explainers assign an attribution, also known as saliency or im-
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portance, to each input feature, such as a token in a text input. For an instance
(𝑥, 𝑦), each feature of 𝑥 is called a fundamental explanation unit (FEU), defined as
𝑢 = (𝑥, 𝑦, 𝑙) ∈ 𝒰 with 1 ≤ 𝑙 ≤ 𝐿𝑥 as the feature index. 𝑒(𝑢) ∈ ℰ represents the
attribution value assigned to it, where ℰ is the attribution space, such as [−1, 1] for
normalized explanations. 𝑒(𝑢−) =

(︁
𝑒
(1)
𝑥 , ..., 𝑒

(𝑙−1)
𝑥 , 𝑒

(𝑙+1)
𝑥 , ..., 𝑒

(𝐿𝑥)
𝑥

)︁
∈ ℰ*− denotes the

explanations on all other FEUs of 𝑥.

5.3.2 ExSum Rules

An ExSum rule formalizes a piece of model understanding, such as that for positive
words in Figure 5-1, which we use as the running example.

Definition 5.3.1 (ExSum rule). An ExSum rule 𝑟 is defined by two functions.
A binary-valued applicability function 𝑎 : 𝒰 → {0, 1} determines whether the rule
applies to a given FEU, with 1 being applicable and 0 otherwise. We use 𝑎(𝒰) =

{𝑢 ∈ 𝒰 : 𝑎(𝑢) = 1} to denote the applicability set. A set-valued behavior function
is defined as 𝑏 : 𝑎(𝒰) × ℰ*− → 𝒫(ℰ) where 𝒫(ℰ) is the power set (i.e., the set of all
subsets) of ℰ . This function predicts a set of possible explanation values for the FEU,
called the behavior range. The rule is written as 𝑟 = ⟨𝑎, 𝑏⟩. We abbreviate 𝑏(𝑢, 𝑒(𝑢−))

as 𝑏(𝑢) and refer to the two functions as 𝑎- and 𝑏-functions.

For FEU 𝑢 = (𝑥, 𝑦, 𝑙), the 𝑎-function typically depends only on 𝑥𝑙, but could depend
on the entire input 𝑥 (e.g., for long sentences) or the output 𝑦 (e.g., for positive
class). In our example, it tests whether the sentiment score is greater than that
of the word “memorable” (0.638). The 𝑏-function usually outputs a constant range.
Since “memorable” has a saliency of 0.479, the range is [0.479, 1.0].

5.3.3 Additional Examples

While we expect most rules to use rather simple 𝑎- and 𝑏-functions, they can also be
more complex with more nuanced aspects. For the following examples, recall that
𝑢 = (𝑥, 𝑦, 𝑙). An applicability function can target words only in long sentences using a
conjunction with len(𝑥) ≥ 𝐿, where 𝐿 is the threshold. We can also target inputs with
ambivalent predictions with max𝑐𝑚(𝑥)𝑐 ≤ 0.6, where max𝑐 𝑚(𝑥)𝑐 is the probability of
the predicted class. For behavior functions, to indicate the first word of the sentence
has higher saliency than the rest, we can define 𝑏(𝑢, 𝑒−) = (max𝑙′≥2 𝑒

(𝑙′)
− , 1.0], where

the 𝑎-function selects the first word (i.e., 𝑎(𝑢) = 1𝑙=1). Similarly, to describe that an
FEU has higher saliency than all the verbs in a sentence, we can can use 𝑏(𝑢, 𝑒−) =(︁
max 𝑙′:is_verb(𝑥𝑙′ )

{𝑒(𝑙
′)

− },+∞
)︁
.
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5.3.4 ExSum Rule Unions

Since a single ExSum rule is designed to capture one aspect of model understanding,
multiple rules are often necessary for comprehensive understanding. However, con-
flicts can occur when multiple rules apply to the same FEU but the 𝑏-functions are
different. We resolve them by defining the composition of two or more rules into a
rule union.

Definition 5.3.2 (Precedence-Mode Composition). Two rules, 𝑟 = ⟨𝑎, 𝑏⟩ and 𝑟′ =

⟨𝑎′, 𝑏′⟩, can be composed into a precedence-mode rule union 𝑟* = 𝑟 > 𝑟′ defined as
𝑟* = ⟨𝑎*, 𝑏*⟩ where

𝑎*(𝑢) = 1{𝑎(𝑢) + 𝑎′(𝑢) ≥ 1}, (5.1)

𝑏*(𝑢) =

⎧⎨⎩𝑏(𝑢) if 𝑎(𝑢) = 1,

𝑏′(𝑢) if 𝑎(𝑢) = 0 and 𝑎′(𝑢) = 1,
(5.2)

represent the 𝑎- and 𝑏-functions of rule union 𝑟*, with semantics similar to those for
rules.

For example, if we want to split positive adjectives into a separate rule from other
positive words, we create a rule to test for part-of-speech and sentiment score, and
assign a higher precedence to this rule, such that the original rule is only applicable
to the remaining non-adjectives. One useful practice is to include a lowest-precedence
catch-all rule that covers everything not addressed by other rules, with a constant
𝑎(𝑢) = 1 function, which leaves no FEUs unaccounted for.

Definition 5.3.3 (Intersection-Mode Composition). Two rules, 𝑟 = ⟨𝑎, 𝑏⟩ and 𝑟′ =

⟨𝑎′, 𝑏′⟩, can be composed into an intersection-mode rule union 𝑟* = 𝑟 & 𝑟′ defined as
𝑟* = ⟨𝑎*, 𝑏*⟩ where

𝑎*(𝑢) = 1{𝑎(𝑢) + 𝑎′(𝑢) ≥ 1}; (5.3)

𝑏*(𝑢) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑏(𝑢) if 𝑎(𝑢) = 1 and 𝑎′(𝑢) = 0,

𝑏′(𝑢) if 𝑎(𝑢) = 0 and 𝑎′(𝑢) = 1,

𝑏(𝑢) ∩ 𝑏′(𝑢) if 𝑎(𝑢) = 𝑎′(𝑢) = 1.

(5.4)

Unlike precedence-mode, intersection-mode composition is symmetric with respect to
the two rules. This mode is helpful when each property of an FEU has a corresponding
behavior range, and the final behavior range of an FEU depends on FEU’s properties.
For example, if verbs have a behavior range of [-0.4, 0.4] and strongly positive words
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have a behavior range of [0.3, 1], a strongly positive verb would have a behavior
range [0.3, 0.4], or the intersection of the two constituent ranges. In our case studies,
however, we do not encounter any situations in which intersection-mode compositions
were preferable.

Since rule unions are also defined by 𝑎- and 𝑏-functions, they can form other rule
unions in the same way. Recursively, this results in a list of rules composed into
a single rule union, written as 𝑟* = (𝑟3 > 𝑟1) & ((𝑟4 & 𝑟2) > 𝑟5). This rule union
represents our generalized model understanding.

5.3.5 Quality Metrics

We propose three metrics for establishing the quality profiles of ExSum rules or rule
unions. All of them implicitly depend on the relative weight of each feature that we
assign. In ExSum, for an instance with 𝐿 features, we assign equal weight to each
of them. In addition, for two instances with 𝐿1 and 𝐿2 features, we assign the same
total weight to them. In other words, the weight of each feature in the first instance
is 𝐿2/𝐿1 times that of each feature in the second instance.

Recall that 𝑢 = (𝑥, 𝑦, 𝑙) represents the 𝑙-th feature of the data instance 𝑑 = (𝑥, 𝑦).
The above weighting notion is captured by the distribution P𝑈 over 𝒰 such that the
probability (or probability density) of 𝑢 = (𝑥, 𝑦, 𝑙) is 1/𝐿𝑥 of that of 𝑑 under the data
distribution P𝐷. In other words, sampling of 𝑢 can be performed in two steps: first
draw an instance 𝑑 = (𝑥, 𝑦) ∼ P𝐷, then a feature index 𝑙 ∼ Unif({1, ..., 𝐿𝑥}).

Definition 5.3.4 (Coverage). The coverage of a rule (union) 𝑟 = ⟨𝑎, 𝑏⟩ is defined as
follows:

𝜅(𝑟) = E𝑈∼P(𝑈) [𝑎(𝑈)] . (5.5)

This represents the fraction of FEUs that we attempt to understand. While individual
rules may have low coverage because they specialize in aspects of the model behavior,
we want their union to have high coverage to achieve a comprehensive understanding
of the model and prevent model prediction from being excessively affected by the
uncovered (i.e., unexplained) input features. For our positive word rule, the coverage
is the frequency of those words in the corpus and not surprisingly is only 1.6%. By
contrast, including a catch-all rule in the union maxes out its coverage value at 100%.

Definition 5.3.5 (Validity). Let P𝑎(𝑈) be P𝑈 truncated to the set of applicable FEUs.
The validity of a rule (union) 𝑟 = ⟨𝑎, 𝑏⟩ is then defined as follows, capturing the
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intuitive notion of a “correct” understanding:

𝜈(𝑟) = E𝑈∼P𝑎(𝑈)
[1{𝑒(𝑈) ∈ 𝑏(𝑈)}] . (5.6)

For our example, we compute it as the frequency that the saliency of those words
is actually in the range of [0.479, 1] – which turns out to be only 3.1% of the time.
However, validity alone is not sufficient, as it increases with wider behavior range.
We thus establish sharpness as a competing metric.

Definition 5.3.6 (Sharpness). Let P𝐸 be the probability measure corresponding
to the marginal distribution over explanation values generated by the explainer on
𝑢 ∼ P𝑈 . The sharpness of a rule (union) 𝑟 = ⟨𝑎, 𝑏⟩ is defined as follows:

𝜎(𝑟) = E𝑈∼𝑃𝑎(𝑈)

[︀
1− P𝐸(𝑏(𝑈)∖𝑈)

]︀
, (5.7)

where 𝑏(𝑈)∖𝑈 = 𝑏(𝑈)∖{𝑈} removes the actual attribution value 𝑈 from the behavior
range to prevent penalizing sharpness simply because the attribution value is very
common (e.g., zero for sparse explanations), in which case P𝐸 is discrete at 𝑈 .

Sharpness represents precision in the understanding, as 1−𝜎(𝑟) gives the probability
that a random FEU explanation value is correct. Thus, a lack of precision represented
by a wide behavior range has minimal sharpness. We use the probability measure
P𝐸 to define the “size,” as it is consistent across all explanation distributions, most of
which are non-uniform. A more general interpretation of sharpness is the consistency
of the described model behavior: if a behavior range is wide (e.g., containing very
positive and negative saliencies), then it is less sharp, and hence less useful. P𝐸 could
be replaced by an application-specific diversity measure, though the precision notion
may be lost.

There is generally a trade-off between validity and sharpness, as more precise rules
(i.e., those with narrower behavior ranges) are less likely to be valid. For our rule, the
probability of a random word saliency being in [0.479, 1.0] is 0.2%, indicating that
explanation values are rarely higher than 0.479. This makes sharpness very high at
99.8%. However, the rule is not useful because of its low validity; i.e., it is almost
never correct. By comparison, the looser range of [-0.01, 1.0] has 90.4% validity but
28.6% sharpness. There is another trade-off between coverage and the two, since a
larger set of covered FEUs tends to be more diverse, making it harder to write a
𝑏-function that remains as valid and sharp simultaneously.

Since these metrics are all expected values, we can estimate them by their empirical
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estimate from a dataset (i.e., a simple average), and P𝐸 can be constructed by kernel
density estimation.

5.4 ExSum Development Process and GUI

Composition structure for the rule union and, if a rule is selected, the counterfactual without it

Rule list 
panel to 

select and 
inspect 

individual 
rules

Metric values for 
the rule union, 
and, if a rule is 

selected, the CF 
rule union and the 

selected rule 

Parameter inspection 
and tuning for the 

selected rule

Visualization of input texts, 
along with ground truth and 
predicted labels. Information 
is conveyed through graphics 
and word formatting such as 

boldface, underscore and 
color. 

Figure 5-2: ExSum inspection GUI.

We describe a systematic procedure for authoring ExSum rule unions from scratch
and utilize it in Section 5.5. Starting from an empty rule union with no FEUs covered,
we iteratively create rules that target uncovered FEUs. Each rule describes one model
behavior, such as that for highly positive words. For a rule, the 𝑎- and 𝑏-functions
need to be defined, which may involve setting and tuning parameters, such as the
sentiment threshold. Last, we add a lowest precedence catch-all rule if any FEUs
remain uncovered. During this process, we may also merge or split rules and change
the composition structure according to the metric values.

To support these steps, we developed a Python Flask-based [54] graphical user inter-
face (GUI, Figure 5-2). Users can visualize the FEUs, with font formatting for their
coverage and validity. Users can also filter for uncovered or invalid FEUs, iteratively
constructing and refining the rule union. ExSum rule definitions usually include pa-
rameters such as the sentiment threshold. Manually selecting correct values for the
parameters is tedious, so the lower middle panel of the GUI implements automatic
parameter tuning for a given target metric value. Installation and usage instructions
for the GUI are available on the project page1.

1https://yilunzhou.github.io/exsum/
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5.5 Evaluation

We construct ExSum rule unions for SST and QQP models. Table 5.1 summarizes
the key parameters of our experiment. Both saved models are publicly accessible
from Huggingface Hub, and the model names in the table are links to the respective
model checkpoints. For normalization, we divided all explanation values for all test
set instances by a single scaling factor such that the maximum magnitude of new
explanations is 1.

Task Dataset Model Acc. F1 Explainer
Sentiment SST-2 [144] RoBERTa [98] 95.6% 0.957 SHAP [99]
Paraphrase QQP [71] BERT [38] 90.7% 0.875 LIME [128]

Table 5.1: A summary of tasks, models (fine-tuned on respective datasets), and
explainers for the two case studies.

We split the test set into a construction set to create the rule union and tune its
parameters (analogous to the training and validation set in supervised model training)
and an evaluation set to compute unbiased estimates of the metric values (analogous
to the test set).

5.5.1 Sentiment Classification

Setup Figure 5-3 shows the SHAP explanations on three sentences (after normal-
ization).
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Figure 5-3: SHAP explanations for three SST inputs.

We take 300 random sentences as the construction set, with the remaining 1910
sentences as the evaluation set. We compute five features for each FEU: sentiment
score, part of speech (POS), named entity recognition (NER), dependency tag (DEP)
and word frequency. For example, the word “same” in the sentence “They felt like
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Figure 5-4: Coverage and validity metrics for the three current practice modes. Ta-
ble 5.5 of Appendix 5.9.2 presents the complete numerical data (also with sharpness).

the same movie to me.” has sentiment score of 0.028, POS=ADJ, NER=O, DEP=

amod, and frequency of 7.14e-4, with SHAP saliency of -0.82.

Current Practice We evaluate the current practice of extracting informal model
understanding from local explanation inspection against the three metrics. We assess
three values of 𝐾, the number of inspected instances: 1, for the typical ad hoc setting
of generalization from a single explanation, 10, for a more careful investigation, and
30, which is quite cumbersome for manual inspection. These examples are selected
either randomly or by submodular pick [128]. Next, we consider three ways to extract
model understanding – belief-guided (BG), quantile-fitting (QF) and word-level (WL)
– and apply them to create rules on strongly positive words and stop words introduced
in Section 7.1. For the strongly positive word rule, BG mandates that words more
positive than the average sentiment score should have an above-average saliency score,
representing the belief of a positive correlation between the two. For the stop word
rule, a saliency range belief of [-0.05, 0.05] is averaged with the observed range.
For both rules, QF extracts the 5%-95% quantile interval of the saliencies for words
covered by the respective rule. WL, by contrast, creates a behavior range for each
word seen, with 0.03 margin on both sides. Appendix 5.9.2 presents technical details
for these.

We formalize the understanding derived from the selected instances and plot their
coverage and validity metrics on the evaluation set in Figure 5-4. For BG and QF,
the bars represent the average metric value of the positive word and stop word rules.
For WL, the bars represent the metric for the rule union consisting of an individual
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Figure 5-5: Behavior ranges can vary widely and unpredictably on similar words for
WL rules.

rule for each unique word. Error bars for the random pick represent the standard
deviation across five iterations. Table 5.5 of Appendix 5.9.2 presents the complete
statistics for all metric values, and we highlight several findings.

• A very small number of samples (e.g., 1) exhibit large variance for random pick,
and low validity for both pick methods. This confirms the intuition that model
understanding from very few explanations should be avoided.

• BG overall yields low validity, because its “beliefs” turn out to be quite incorrect.
This suggests a strong prior belief about how the model works could lead to incor-
rect conclusions.

• While submodular pick can select a more diverse set of words, to the particu-
lar benefit of the coverage of WL2, its validity is generally lower due to under-
representation of common words.

• Although WL achieves highest coverage and validity, it has > 500 rules at 𝐾=30,
with similar words having very different ranges, as shown in Figure 5-5 – a con-
glomerate (almost) impossible to make sense of. It also overfits, as the evaluation
set validity is much lower than the construction set validity (which is 100% by
construction).

• At 𝐾=10, only the stop word rule with random pick QF achieves validity > 80%,
indicating that even the more careful practices are unreliable.

All the drawbacks call for a principled way to derive robust model understanding
with enforceable metric values (e.g., validity). As we demonstrate next, given a large
construction set and automatic parameter tuning assistance, we can create such a
ExSum rule union. Finally, as a meta-point, the above discussion above of various

2The other two are less affected because the subject of the rule (e.g., stop words) largely dictates
which words it covers.
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Idx Rule Cov% Val% Shp%
1 Negation 1.2 89.5 65.1
2 Strongly neg. adjectives 3.2 91.6 83.5
3 Strongly pos. words 5.1 91.9 40.0
4 Strongly neg. non-adjectives 1.2 89.9 71.4
5 Person name 2.4 90.9 28.4
6 Stop words 47.5 90.8 23.5
7 Zero-sentiment words 17.1 90.0 15.6
8 Weakly pos. words 15.4 91.2 11.3
9 Weakly neg. words 5.7 91.7 31.4

Union
On construction set 100 90.7 26.1
On evaluation set 100 89.4 26.2

Table 5.2: SST rules, rule union and their metric values.

limitations would not be possible without the proposed ExSum formalization and
metric definitions.

ExSum Construction We create a rule union consisting of nine rules, with tar-
get validity of 90% and tune the sharpness accordingly. Table 5.2 summarizes the
individual and aggregate metrics.

Clearly, high validity comes at the cost of low sharpness. Since (1 − sharpness) is the
probability that a random FEU has an explanation value within the behavior range,
this around 90.7% validity should be put into a context where the random baseline
achieves a validity of around 75%. In this sense, we attain only a crude understanding
of the local explanations that misses many subtleties.

Nonetheless, Rule 3 (strongly positive words) and Rule 6 (stop words) achieve better
validity-sharpness trade-off than their counterparts created using the ad hoc BG and
QF methods above. Moreover, the WL rules cover all words seen in the analyzed
instances – analogous, in a sense, to our ExSum rule union. While the validity-
sharpness trade-off is comparable between the two, ours has 100% coverage due to the
effectively “catch-all” Rule 7, while WL rules have less than 60%. Most importantly,
as our rule union is composed of nine semantically organized rules, it is much more
interpretable than WL, which include more than 500 unpredictably varying rules
(Figure 5-5).

The fact that the ExSum rule union reveals the imprecision and limitations of our
model understanding while still performing better than current practice emphasizes
the need for more formal and quantitative model understanding, as well as the devel-
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opment of methods that are easier to understand, in addition to being correct. These
rules are explained below in more detail.

• Rule 1: Negation words have negative saliency. We found that negation
words – not, n’t, no, nothing and those with NEG dependency tag – almost invari-
ably receive (sometimes highly) negative saliency, regardless of the sentence label
or sentiment of the word being modified. We create a rule that predicts a constant
behavior range [−1.0, 0.002], with 89.5% validity and 65.1% sharpness. Although
the validity is under our 90% target, we found that to make it higher, the up-
per limit of the behavior range needs to be 0.1, which results in an extremely low
sharpness of 11%. Thus, we decided against it.

• Rule 2, 3, 4, 8, 9: Sentiment-carrying words. We expect a sentiment clas-
sifier to recognize sentiment-laden words. To test our intuition, we create rules for
positive and negative words, and further split each set of words into two according
to sentiment strength, resulting in four rules. For the two rules on strong words, we
find that wide behavior ranges of [0.01, 1] and [-1, -0.01] are necessary to achieve
90% validity, suggesting the looseness of the model understanding. However, we do
observe that negative adjectives (but not positive ones) are modeled much better,
where a range of [-1, -0.06] is sufficient for the same validity. Thus, we create a
separate Rule 2, with very high sharpness of 84.2%. For the two rules on words of
weaker sentiment, even wider ranges of [-0.11, 1] and [-1, 0.05] are necessary. Since
both ranges encroach upon the other side, the model often considers these words to
have an impact opposite to their intrinsic meaning, but we fail to extract further
understanding. In addition, negative rules are much sharper than positive ones,
suggesting that the model considers a negative word to be stronger evidence for a
negative prediction than its positive counterpart.

• Rule 5: Person names have positive saliency. During our initial inspection,
we found several cases where the name of a person (e.g., director or actor) have
positive saliency values. Thus, we create this rule from the NER tag, covering
2.3% of words. However, after parameter tuning, we found that while many of the
words have positive saliency, the correct characterization is that they all have small
saliency values, as a behavior range of [−0.06, 0.1] achieves 91.6% validity. However,
since SHAP saliencies are mostly concentrated around 0, this range achieves a
meager sharpness of 26.8%. Despite this, we still decide to keep it.

• Rule 6: Stop words. While stop words (e.g., “the”, “of”) should have negligible
impact on prediction (and saliency values close to zero), a narrow behavior range
of [-0.05, 0.05] only has 64% validity. We create this rule for all stop words with
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90% target validity and use different ranges on different words for better sharpness.
On average, we get [-0.07, 0.12], demonstrating that they can sometimes be more
influential than even strong sentiment words. The ranges also tilt to the positive
side, uncovering a grammaticality bias wherein prediction is more negative for
grammatically incorrect sentences with stop words masked out by SHAP.

• Rule 7: Zero-sentiment words have small saliency. Besides stop words, we
should expect words that do not carry sentiment, such as most nouns and verbs
(e.g., movie and get), to have small saliency magnitudes. Due to the wide range of
words applicable under this rule, we choose the saliency range to be [−0.15, 0.15]
for ≥ 90% validity, but this range yields lowest sharpness of 13.5%.

5.5.2 Paraphrase Detection

Setup Figure 5-6 shows the LIME explanations on two sentences (after normaliza-
tion).
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Figure 5-6: LIME explanations for two QQP pairs.

We take 500 random test set sentences as the construction set and the remaining ≈
40k as the evaluation set. We remove the word sentiment feature but add the question
ID (1 or 2) of each FEU.

ExSum Construction QQP is a more complex domain than SST, since the label
is the semantic equivalence of two sentences. The metric values for the ExSum are
summarized in Table 5.3. Below, we describe how expectations for the model are
validated, but a hidden – and somewhat surprising – phenomenon is also uncovered.

• Rule 1, 2: Matching words. Due to the nature of the task, we expect the
model to rely heavily on matching words. For such a word 𝑢, defined as (proper)
noun, verb, adjective or pronoun that has exactly one case-insensitive match 𝑣 in
the other question, we expect similar saliency to their match due to symmetry,
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Idx Rule Cov% Val% Shp%
1 Matching words neg. prediction 11.7 90.9 39.5
2 Matching words pos. prediction 12.4 90.3 38.6
3 Non-matching words neg. prediction 18.7 90.0 35.5
4 Question mark neg. prediction 5.2 90.2 36.5
5 Question mark pos. prediction 3.8 90.0 23.1
6 Stop words neg. prediction 22.3 90.0 32.8
7 Stop words pos. prediction 12.6 90.5 12.5
8 Negation words neg. prediction 0.3 90.0 36.0
9 Negation words pos. prediction 0.1 95.7 7.2

10 All else neg. prediction 4.0 92.1 23.5
11 All else pos. prediction 8.8 90.3 5.7

Union
On construction set 100 90.3 29.3
On evaluation set 100 90.0 29.1

Word
Avg

On construction set 100 90.8 29.4
On evaluation set 82.3 84.4 29.4

Table 5.3: QQP rules, rule union and their metric values. The last two rows are for
the baseline at the end of Section 5.5.2.

or formally its saliency 𝑠𝑢 ∈ [𝑠𝑣 − 𝛼, 𝑠𝑣 + 𝛽], where 𝛼 and 𝛽 are lower and upper
margins. This behavior function is non-constant, with output depending on the
saliency values of other words in the sentence.

For the same margin, FEUs for pairs of negative predictions have much higher
validity than positive ones, so we split the rule into two based on the prediction.
Despite a less than 1% difference in sharpness (Table 5.3), we have 𝛼 = 𝛽 = 0.07 for
the negative rule, but 0.18 for the positive rule, suggesting that the matching words
make a much larger and more unpredictable contribution to positive predictions.
Interestingly, all other rules had wider intervals for positive predictions as well.

• Rule 3: Non-matching words. Next we study model behaviors for non-matching
words, defined analogously to matching ones. Following the previous split based on
predicted label, we designed two rules. The negative rule has a reasonably sharp
behavior range of [-0.35, 0.01] at 90% validity. Given that LIME saliency is the
linear regression coefficient on a neighborhood created by word erasure, we con-
clude that the presence of these non-matching words mostly causes the prediction
to tilt toward the non-paraphrase (i.e., negative) class, indeed a very reasonable
behavior. However, we cannot find a range with 10% sharpness at 90% validity for
the positive rule and thus discard it.
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• Rule 4, 5: Saliency for trailing question marks. Since the dataset is com-
posed of pairs of questions, the vast majority of sentences conclude with question
marks. These should be purely decorative and syntactic, and so should have small
saliency, similar to stop words. However, we observe that the saliencies assigned to
them for positive and negative predictions are very different, so we create two rules
for these two cases. With a 90% validity target, the saliency range is [-0.04, 0.03] for
negative predictions and [-0.07, 0.06] for positive predictions. Again, the saliencies
for positive predictions demonstrate more variation than those for negative ones.

• Rule 6, 7: Saliency for stop words. Similar to SST, we use these two rules to
ensure stop words should not be influential. We split the stop word group into finer
segments by part of speech, to achieve higher sharpness. On average, the range is
[-0.07, 0.03] for negative predictions and [-0.09, 0.1]for positive predictions, which
again demonstrate a much higher degree of variation.

• Rule 8. 9: Saliency for negation words. In the SST case, we found that
negation words typically have negative saliency regardless of the sentiment label,
and test whether this holds for QQP as well. Following on our previous findings, we
use two rules to separately model inputs of positive and negative predictions. We
find that the range is [-0.1, 0.24] for positive predictions and [-0.21, 0.01] for that
for negative predictions. Curiously, the same negative saliency trend is preserved
here as well, but only for inputs with negative predictions.

• Rule 10, 11: Saliency for everything else. Finally, we designed two lowest-
precedence “catch-all” rules to complete the coverage. The range for positive pre-
diction FEUs is [-0.13, 0.25]. For negative prediction inputs, we find that breaking
them according to different parts of speech (nouns, verbs, adjectives, and every-
thing else) is helpful, with verbs having a particularly narrow saliency range of
[-0.05, 0.05]. On average, the saliency range is approximately [-0.09, 0.05].

Regarding the sharpness contrast by predicted label, one explanation is that the
model defaults to a negative prediction, since many negative pairs consist of com-
pletely unrelated questions and the model decision is largely insensitive to input
perturbations, leading to stable LIME coefficients. On the other hand, a positive
prediction requires the cooperation of all parts of both questions. Depending on the
exact sentence structure, the importance of each word to the match are different and
hard to predict, which prevents the rules from being sharp.

Word Average Baseline We introduce a new baseline as an “automated” version
of WL rules in SST. Specifically, for each word in the construction set, we compute
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a behavior range around its average saliency, with sharpness of 29.4% (matching
that of our ExSum rule union). As Table 5.3 shows, the resulting rule union is
much worse than our manual one on both evaluation set coverage and validity, which
is not surprising as the word saliency should be more context-dependent, due to
the matching mechanism of paraphrase detection. Moreover, with more than 2,000
constituent rules, the rule union barely qualifies as any sort of generalized model
understanding.

5.6 Related Work

As discussed in Section 5.1, explanation evaluation usually has a focus on correctness
(or faithfulness) – i.e., whether the explanation truly reflects the model’s reasoning
process. This includes sanity checks [1], proxy metrics [9, 136], and explicit ground
truth [182]. The understandability issue has been much less studied, with the ex-
ception by Zheng et al. [172], who proposed an evaluation specifically for rationale
models [94]. ExSum, however, addresses post hoc explanations of general black-box
models.

In addition, a few prior works have attempted to capture the “end-to-end” utility of
explanations: whether access to explanations leads to performance increase in certain
tasks. Hase and Bansal [57] proposed a model-teaching-human setup, subsequently
extended by Pruthi et al. [123] into an automated evaluation procedure. Bansal et al.
[14] studied whether explanations can improve human-machine teaming performance.
While these studies report mostly negative results, pinpointing the root cause is
difficult due to their end-to-end nature. Poor understanding of the explanations may
be a major reason, as indicated by ExSum.

Last, some authors proposed methods for understanding model predictions beyond
individual instances. For example, the anchor method [129] generates an explicit do-
main of applicability for each explanation, while Lakkaraju et al. [89] and Lakkaraju
et al. [90] proposed to learn “patches” of the input space specified by logical predi-
cates (e.g., if blood pressure is above 160/100 and the patient has cancer, then the
mortality risk is high). ExSum also emphasizes the need to understand models that
generalizes across instances, and uses logical predicates in the formulation, but the
central difference is its focus on model understanding via explanations (e.g., if blood
pressure is above 160/100, then it has a high impact on the mortality prediction),
instead of direct predictions. In other words, ExSum tries to explain why particu-
lar features have respective importance according to some local explanation method,
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rather than why a particular prediction is made. There are three reasons for this.

First, a focus on explanation can capture a wider variety of behaviors. For example,
for the QQP model, we found that matching words to have similar impact, regardless
of the model prediction. This insight is easy to formalize with ExSum but hard to
describe when we only focus on the model prediction. Furthermore, ExSum works
with arbitrary black-box models for model prediction and local explainers for model
explanation, allowing it to take advantage of advances in both parts, while logical
predicate classifiers [e.g., 89] are mostly limited to tabular data and essentially im-
possible to learn for image and text domains. Last, from a practical perspective,
since people use local explanations such as LIME and SHAP to analyze their models
anyway, ExSum provides a principled way of for such analysis that we demonstrate
to be much better compared to current ad hoc approaches.

5.7 The Many Faces of Understandability

The central thesis of ExSum is quite simple and intuitive: in order to understand
a model from local explanations, we need to understand those local explanations.
While ExSum is the first framework to explicitly formalize and quantify the notion of
understandability, we argue that it is connected to many often-discussed and desirable
properties of explanation. Crucially, all of these properties can be demonstrated to
be in conflict with correctness, in that the search for the most “correct” explanation
should disregard these properties. From this perspective, we put forth the property
of understandability as one orthogonal to correctness, while being equally important.

5.7.1 Human Alignment

Many prior works have assessed how much explanations agree with human expec-
tation. For example, Li et al. [96] observed that the word “hate ” contributes the
most to a negative sentiment prediction in many inputs, and used it to argue the
explanation is correct. In a similar sentiment classification task, Bastings et al. [15]
used the high degree of overlap between the extracted rationale and strong-sentiment
words to argue the superior quality of a neural rationale model [94]. In computer
vision, this alignment is often implemented as a pointing game that computes the
intersection-over-union (IoU) metric between the salient region and the semantic seg-
mentation mask of the predicted class [44, 142], as shown in Figure 5-7. For a model
that predicts breast cancer onset using patients’ genetic information, Covert et al.
[33] demonstrated that many of the influential genes identified by their explainer
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were indeed known to be associated with the disease.

p 

“Pointing Game” 

with intersection-over-union 

Figure 5-7: A pointing game for quantifying human alignment in visual explanations.

As discussed in Chapter 4, models could use any unexpected spurious correlation, such
as the green background in Figure 5-7. For these models, correct explanations should
have low alignment scores. When correctness (or faithfulness) is the sole desideratum
of interpretability methods, it is unclear what purposes these alignment evaluations
serve. Some authors [e.g. 73] have even argued they are fundamentally misleading
and flawed in nature as they focus on plausibility, which is sometimes at odds with
the goal of correctness.

However, from the perspective of understandability, high-alignment explanations are
arguably very understandable, simply because they align closely with human expec-
tation. Thus, given the same level of correctness, a higher-alignment explainer may
be preferable.

5.7.2 Robustness

Besides human alignment, robustness – i.e., that similar inputs should have similar
explanations – is also argued to be a favorable property for explanation. For exam-
ple, Ghorbani et al. [49] argued that explanations are fragile due to their adversarial
vulnerability, Alvarez-Melis and Jaakkola [4] empirically estimated the Lipschitz con-
stant for many explainers, and Alvarez-Melis and Jaakkola [5] proposed an inherently
interpretable model that is explicitly regularized for explanation robustness.

Robustness generally conflicts with correctness. If, for two inputs, the model is using
distinct reasoning patterns, the correct explainer should faithfully report distinct
explanations for them. One straightforward example is the decision tree model shown
in Figure 5-8, where the root node splits on the second feature at a threshold value
of 3. For two inputs 𝑥1 and 𝑥2 that agree on all features except the second one, with
𝑥
(2)
1 = 2.99 and 𝑥

(2)
2 = 3.01, since they are sent down two different sub-trees at the
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𝑥(2) ≤ 3 

…  …  

Figure 5-8: A decision tree that splits on the second feature at the root node.

very beginning, the model is likely to use for totally different features.

Nonetheless, as implicitly argued by the works above, erratic model behaviors are less
understandable because they make it more difficult to identify generalizable patterns
compared with slowly varying explanations in the input space. Thus, robustness is
another aspect of the same understandability desideratum.

5.7.3 Counterfactual Similarity and Plausibility

Unlike feature attribution explainers that assign importance to individual features,
counterfactual (CF) explainers [e.g., 131] directly generate whole inputs but for a
target predicted class. Thus, a CF explanation indicates how to cross the decision
boundary from the input.

Naturally, the fundamental requirement of CF explanations is achieving the target
prediction, which is typically known as validity. However, this is trivially satisfiable
by simply finding a training instance with the target prediction, along with other
ways such as creating adversarially perturbed or nonsensical inputs. Thus, two ad-
ditional requirements are often enforced: similarity and plausibility. The former says
that the CF explanation should be close to the original input (with regard to, for
example, edit distance), and the latter says the CF explanation should be plausible,
or natural. Table 5.4 depicts various CF explanations and their satisfaction of the
three requirements.

Validity for CF can be considered as the correctness analogy for feature attribution,
but the purposes of similarity and plausibility are not readily apparent. As CF expla-
nations represent ways to cross the decision boundary, people need to meaningfully
understand how the CF instance is related to the original input. It is difficult to
relate two dissimilar instances, and an implausible CF instance is generally unex-
pected. Thus, similarity and plausibility are required to make CF explanations more
understandable.
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Input: This restaurant is the best I have been, with especially great food.
CF Type Val. Sim. Plau.

This restaurant is the worst I have
been, with especially terrible food. “good” CF ✓ ✓ ✓

Rude service! training set
look-up ✓ ✗ ✓

This resturant is the best I have
been, with especially great food.

adversarial
typo injection ✓ ✓ ✗

Fjwpeaf fawekl fka erj sfdlk erjlm
adl erio fd

nonsensical
inputs ✓ ✗ ✗

Table 5.4: Counterfactual explanations that are all valid but differ in similarity and
plausibility metrics.

Interestingly, if our true goal is the understandability of the relationship between
the input and its CF explanation, there are cases where similarity or plausibility
is not desirable. First, consider a sentence length classifier that predicts positive for
sentences of at least 10 words, and negative otherwise. Given an input of three words,
the CF explainer should generate dissimilar CF instances of at least 10 words in order
to correctly illustrate the decision boundary, while instances of even more words
would be helpful for understanding the “at least 10 words” logic. Second, consider
a classifier trained on a typo-free dataset and having high probability of making
mistakes on inputs that contain typos. To illustrate this behavior, CF explanations
should contain randomly (not adversarially) injected typos, which are implausible,
but useful as long as the typo injection is understood by people.

5.8 Discussion and Conclusion

Traditionally, model explanations are evaluated on correctness (or faithfulness), i.e.,
whether they correspond to how models actually make predictions, e.g., reliance on
spurious correlations [3, 182]. Such evaluation, however, does not answer the equally
important question of whether these (presumably correct) explanations are under-
standable. Even faithful explanations can lead users into error, if misunderstood
(e.g., trusting a model incorrectly).

In a sense, the most correct explanation for an input is the literal trace of model com-
putation, but it is also arguably the least understandable (or useful). As we abstract
away from low-level details and use higher-level concepts such as word sentiment, the
resulting explanation loses correctness but gains understandability. At the other ex-
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treme are explanations that are trivially understandable but completely wrong, such
all attribution values being 0 (i.e., no feature impacts the model prediction). Thus,
a trade-off often occurs between these two desiderata, and we need to choose a sweet
spot.

Concretely, we propose ExSum rules and rule unions, along with three quality met-
rics to formalize and evaluate understandability. Such rigorous investigations stand
in contrast to current ad hoc practices, which are prone to yielding unreliable and
coarse model understanding. For SST and QQP datasets, ExSum demonstrates that
our model understanding is quite limited and imprecise, even with very reasonable ex-
planations. Being aware of this is an asset. While ExSum helps us to recognize that
our understanding is incomplete, it still helps uncover unexpected model behaviors
that warrant further investigation.

5.9 Appendix

5.9.1 Real World Use Cases for Explanations

Here, we discuss several scenarios in which people use local explanations to understand
models, and argue that people invariably derive generalized model understanding from
these explanations.

Spurious Correlation Identification Natural datasets can contain many spu-
rious correlations. For example, in a COVID-19 chest X-ray dataset, most positive
images (i.e., patients diagnosed with COVID-19) come from a pneumonia-specializing
hospital and contain a watermark of the hospital name, while most negative images
from other hospitals do not. Thus, a model could achieve very high accuracy by sim-
ply detecting the watermark rather than genuine medical signals. Similar spurious
correlations could also be present in the text domain, such as the correlation between
an exclamation mark and the positive sentiment class, or between the word “not” and
the contradiction class in natural language inference.

It is crucial for people to be aware of the shortcuts that models may take, and one pos-
sible way to highlight such behaviors is via feature attribution, which in the examples
above would assign an abnormally high score to the watermark region, exclamation
mark, or the word “not.” Assuming the explanations do indeed exhibit such patterns,
when people claim a model relies on spurious correlation, they mean this in a general
sense: for example, the model is likely to focus on the watermark in any image that
contains it, rather than in only a specific set of images.
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Fairness Assurance Similar to spurious correlation features, other features should
not have a high impact, but for reasons of fairness. For example, decisions made by a
loan approval model should not be affected by gender3, therefore the gender feature
should not have a high attribution score.

If we observe that the gender of one applicant heavily impacts the model’s decision,
we may suspect the model is discriminative; conversely, observing that it has minimal
impact could increase our assurance of the model’s fairness. However, such single-
instance observations are fundamentally exploratory, and claims about the model’s
fairness or discrimination must be established using a population of instances to de-
termine whether the trend persists generally.

Model-Guided Human Learning In some cases, a very accurate and “super-
human” model could be a source for knowledge discovery. Consider the task of early-
stage cancer detection from CT scans, which is challenging for doctors. If a label
is generated from follow-up visits tracking whether patients develop cancer after a
certain number of years, a model achieving better test accuracy than doctors is likely
to use certain cues that would be missed by humans or not known to be linked to
cancer.

For these models, explanation methods such as saliency maps could be used to help
doctors make better diagnoses, or assist scientists in the creation of new pathological
theories. Similarly to the above two use cases, generalized model understanding across
different inputs are necessary, because doctors need to apply what they have learned
to new patients, and scientists require new theories to hold broadly.

5.9.2 Current Practices for SST

Here, we provide an extended description of the three current practices, and how
they are applied on the handful of selected examples, collectively called the “sample”
below.

The first method, “belief guided” (BG), represents the practice wherein the user has
some expectations (or beliefs) about the attributions of certain words, and modifies
(or updates) them after observing explanations on some actual test inputs. It operates
differently for the two rules on positive-sentiment and stop words, as follows.

1. For positive-sentiment words, the prior belief is that a word with a higher sentiment
score (one of the FEU features provided by the SST dataset) should also receive
3There could be other features that correlate with gender, such as job title, but we ignore such

possibilities for simplicity.
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more positive attribution. This leads to a rule that applies to all words with
a sentiment score greater than 𝛼, and has a behavior function that outputs a
constant range of [𝛽, 1] (recall that SHAP values are normalized to [−1, 1]). It
then computes the value of 𝛼 as the mean sentiment score and 𝛽 as the mean
attribution value for all words in the sample with positive sentiment scores.

2. For the stop words – defined as those with parts of speech AUX, DET, ADP,
CCONJ, SCONJ, PRON, PART, and PUNCT – it has a prior belief that they
should have a attribution value range of [-0.05, 0.05] (i.e., not important to model
prediction), and computes the observed attribution range [𝛼, 𝛽] for stop words in
the sample. The final behavior range as predicted by the behavior function of this
rule is the average of these two: [−(0.05 + 𝛼)/2, (0.05 + 𝛽)/2].

The second method, “quantile fitting” (QF), represents the practice wherein the user
fully follows the observed data without any prior beliefs. Specifically, for a set of
words, it collects all attribution values for words within the set and then creates a
rule that applies to this set, with the behavior function predicting a constant range
of 5% to 95% quantile of these attribution values. For the two rules for positive-
sentiment and stop words, the set of words (and hence the applicability functions) is
defined in the same way as for the BG method above.

The last method, “word-level” (WL), can be considered a more extreme version of
QF, where the user not only lacks any prior expectations for the explanations but
also considers each word individually. For example, if the user observes that the
word “brilliant” has an attribution value of 0.5 in one sentence and the word “fantas-
tic” has attribution of 0.8 in another, they would not conclude that other, similarly
positive words would have attributions approximately within the range of [0.5, 0.8].
Specifically, for every distinct word 𝑤 in the sample, this method builds a rule that
applies only to that word, with a constant behavior function that outputs a range
of [min(𝑠𝑤) − 0.03,max(𝑠𝑤) + 0.03], where 𝑠𝑤 is the list of attributions received by
different occurrences of 𝑤. In many cases, especially given a small sample, word 𝑤

only appears once, in which case 𝑠𝑤 is a list containing only that attribution value.

Table 5.5 presents the metric values of the above methods. Figure 5-4 of Section 5.5.1
depicts a graphic summary.

5.9.3 ExSum for Instance-Based Explanations

In this section, we describe our initial attempt at extending the ExSum framework
to another type of explanations: instance-based explanations (IBE). The IBE for
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belief-guided quantile-fitting word-level
𝐾 pick positive stop word positive stop word seen words

1
SP 10, 72, 50 49, 45, 65 10, 63, 44 49, 63, 45 28, 51, 61

RND 𝜇 12, 63, 57 49, 58, 53 12, 45, 56 49, 73, 33 17, 41, 68
RND 𝜎 6, 25, 27 0, 9, 6 6, 32, 29 0, 24, 21 6, 12, 10

10
SP 10, 61, 61 49, 47, 63 10, 78, 34 49, 72, 38 49, 66, 48

RND 𝜇 10, 71, 52 49, 56, 56 10, 75, 32 49, 84, 25 41, 68, 48
RND 𝜎 0, 6, 7 0, 4, 4 0, 9, 10 0, 3, 2 2, 1, 2

30
SP 10, 64, 59 49, 50, 60 10, 88, 17 49, 82, 29 57, 73, 42

RND 𝜇 10, 66, 56 49, 57, 55 10, 82, 26 49, 86, 24 51, 78, 39
RND 𝜎 0, 4, 5 0, 1, 2 0, 6, 7 0, 2, 2 2, 3, 2

Table 5.5: Coverage, validity, and sharpness (percentage) of model understanding
with ad hoc current practice. “SP” refers to the submodular pick procedure, and
“RND” refers to the random sampling procedure. The latter also shows mean 𝜇 and
stdev 𝜎 across five runs.

Type 𝑏(̂︀𝑦) 𝜈 𝜎

Entity change ̂︀𝑦 ± 0.05 91.4 56.5
Minor insert ̂︀𝑦 ± 0.05 89.1 57.3
Negation other-side(𝑦) 30.4 50.0

Negation same-side(𝑦) 69.6 49.9
Negation (≤ 6 words) other-side(𝑦) 56.2 49.7

Table 5.6: Instance-based explanation metrics on SST.

an input 𝑥 is a set of instances and their predictions {(𝑥𝑖, ̂︀𝑦𝑖)}, where 𝑥 and 𝑥𝑖 are
semantically related (e.g., negation). We define ̂︀𝑦𝑖 as the predicted probability of
positive class.

We use Polyjuice [PJ, 165] to generate instances of three semantic operations.
Entity change replaces a proper noun (e.g., actor name) with another using “lexical”
mode of PJ. Minor insert adds a short text to the sentence using “insert” mode.
Negation generated a negated version of the input using “negation” mode. For each
operation type, our expectation for model behavior is formalized as a range 𝑏(̂︀𝑦) on̂︀𝑦. We expect the prediction to be unchanged by the first two operations allowing for
a margin of 0.05, but changed to the other side of 0.5 by negation. We then define
validity 𝜈 = Ê︀𝑌 ,̂︀𝑌𝑖

[︁
1̂︀𝑌𝑖∈𝑏(̂︀𝑌 )

]︁
and sharpness 𝜎 = 1− P̂︀𝑌 [𝑏(̂︀𝑌 )] analogously.

Table 5.6 summarizes the results. While our expectation is mostly confirmed for
entity change and minor insert, it is notably violated in the case of negation, with
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only 30.4% validity, indicating model prediction is on the same side 69.6% of time.
Upon further evaluation, we find that validity drops with sentence length, with short
sentences of six words or fewer having much higher validity (for other-side). Since
the PJ rewriting model is learned rather than manually defined and negation is more
complex than the other two operations, there are two failure modes, as presented in
Table 5.7. In the first, a negation is applied to the input sentence, but on a part
irrelevant to the sentiment. In the second, the generated sentence is not a negation
of the input by any reasonable standard.

These examples highlight the importance of clearly defining the operation: rather
than a generic negation, we would need the negation to happen on the “sentiment-
carrying” part. It is also crucial to ensure that the generator is of a high quality
in order to minimize the chance of generating nonsensical outputs. Despite many
advances in generative language modeling, it have been shown to be undesirable in
many ways [e.g., 66], all of which affect the quality of the counterfactual explanation.

At a high level, IBE explains the local prediction by illustrating ways to cross (e.g.,

Input sentence “Negated” sentence
Human Nature initially succeeds by allow-
ing itself to go crazy , but ultimately fails
by spinning out of control .

Human Nature initially succeeds by allow-
ing itself to go crazy , but ultimately fails
by not coming to consciousness .

This may be the dumbest , sketchiest
movie on record about an aspiring writer
’s coming-of-age .

This may be the dumbest , sketchiest
movie on record , not an aspiring writer
’s coming-of-age .

Before long , the film starts playing like
General Hospital crossed with a Saturday
Night Live spoof of Dog Day Afternoon .

Before long , the film starts playing like
nothing crossed with a Saturday Night
Live spoof of Dog Day Afternoon .

A startling and fresh examination of how
the bike still remains an ambiguous icon
in Chinese society .

A startling and fresh examination of how
the bike still seems to be an ambiguous
icon in Chinese society .

Never engaging , utterly predictable and
completely void of anything remotely in-
teresting or suspenseful .

Not engaging , utterly predictable and
completely void of anything remotely in-
teresting or suspenseful .

Between the drama of Cube ? Are there no interesting problems?

Tailored to entertain ! No tails !

Table 5.7: Failure cases of Polyjuice negations. The first half shows examples where
the negation is irrelevant to the sentiment. The second half includes examples where
the negation fails to appear.
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negation) or not cross (e.g., entity change) the decision boundary in the (very) high-
dimensional input space. However, as the negation case indicates, we must be careful
about the exact definition of the rewriting (e.g., negating any part of the input or the
“sentiment-carrying” part only), as it could have a significant impact on the conclu-
sion. Furthermore, it is difficult for any rewriting mechanism to achieve 100% validity
due to the high dimensionality, the multitude of possible ways of rewriting, and the
imperfection of the model. Focusing only on the mistakes (or ignoring them alto-
gether) yields incomplete model understanding. Instead, the validity metric, which
indicates the generalized model behavior, should be used to.

There are many potentially fruitful directions for future work. First, the quality of
instances obviously depend on the generative models, which, while impressive, are
known to be flawed in many ways [e.g., 66, 112, 164]. Second, each rule essentially
covers the entire input space. Partitioning the input space in some way may allow for
identification of both more and less consistent areas, which is makes the applicability
function much more difficult to define as it now takes whole sentences rather than
individual words. Finally, unlike feature attribution, which conveys the single notion
of “importance,” different instances of the same input can reveal different aspects
of model behavior, calling for a potentially different definition of coverage, which
measures completeness of understanding.
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Chapter 6

Model Transparency by Example

6.1 Introduction

The previous chapters introduce methods for defining and evaluating model explana-
tions. As we have seen, these explanations are local, in that they explain the model
for predictions on certain inputs. Thus, an important question that needs addressing
is: what inputs do we want to explain in the first place?

Currently, this question has been answered in very simplistic way: some test set
instances, where “some” could mean random, cherry-picked, correctly predicted or
incorrectly predicted. To make this process more rigorous, ExSum advocates for the
use of the full test set in deriving formal and rigorous pieces of model understanding.

However, a model understanding procedure based on the test set is, by definition, lim-
ited to the test set. While a large test set is in many times sufficient for covering most
aspects of our desired model understanding, it can be limited in several crucial ways.
First, certain model behaviors may occur very rarely, such as high-confidence mis-
takes for a very high-performing model, for which browsing through even a large test
set may only surface a handful, which may or may not be representative of the gen-
eral model behavior. In addition, as some level of distribution shift is almost always
expected from model development to deployment, how the model adapts to (slightly
or significantly) different distributions are very hard to study, if at all possible, when
we are limited to the test set.

This chapter is based on the AAAI 2021 paper “Bayes-TrEx: A Bayesian Sampling Approach
to Model Transparency by Example” by Serena Booth, Yilun Zhou, Ankit Shah and Julie Shah [21].
Booth and Zhou contributed equally to this work.
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In this chapter, we formalize the above investigations using the concept of model
transparency, which is to understand a model via its input-output behaviors. Thus,
they can be considered as the step before the investigations of interpretability, which
try to explain why certain input-output behaviors happen.

In particular, we propose a transparency-by-example perspective to model under-
standing. Specifically, rather than going through test set to identify interesting model
behaviors, we reverse this process by starting with certain target behaviors that we
want to study, and then find supporting input instances that elicit these behaviors.
For a classifier, which is the model that this chapter investigates, such behaviors may
include the model being confused with respect to two or more classes, exhibiting
high-confidence failures, and forcing to generalize to data of novel classes or styles.

To solve the problem of the test set potentially having poor coverage on rare behaviors
or simply failing to represent novel data, we propose to train a generative model to
synthesize data instances and use it to find the ones that demonstrate the behaviors
that we are after. As an added benefit, using a generative model also mitigates
privacy concerns: illustrating model behaviors to stakeholders with test set instances
may reveal sensitive information, which can be protected if the instances are now
synthetic (but with similar statistics as the test set).

The simplest way to find behavior-conforming instances is to simply filter through all
instances output by the generative model. However, this approach is very inefficient
if the behavior is rare, since we need to discard a large fraction of data. Essentially,
what we want is to define a “desirability function” on data instances that increases as
the input becomes more likely to be produced by the generator and conforms more
to the desired behavior, and then find instances whose desirability function values
are large. We propose an analogy between the search problem and that of sampling
from a Bayesian posterior function, which enables us to use standard sampling tech-
niques, like Markov chain Monte-Carlo (MCMC) for this task. Due to this Bayesian
formulation, we call our framework Bayes-TrEx.

Intuitively, the idea is presented in Figure 6-1, which shows a Corgi vs. Bread classifier.
For different p-level set targets (e.g., pCorgi = pBread = 0.5), Bayes-TrEx can find
examples where the model is highly confident in the Corgi class, in the Bread class,
or ambivalent between the two. Notably, all the samples are likely to be produced by
the generator in the first place, eliminating pathological cases such as random noise
or other non-sensical inputs that happen to have the desired model behavior.

As a baseline comparison to the standard test set inspection approach, we search for
highly confident misclassifications and ambivalent examples in the (Fashion-)MNIST
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P(y = Corgi) 

0.5 

P(y =Corgi)= 0.5 Level Set 
True Posterior 

(D) 

P(y = Corgi) = 0.5 Level Set 
Relaxed Formulation 

Figure 6-1: Left: given a Corgi vs. Bread classifier, we generate prediction level sets, or
sets of examples of a target prediction confidence. One way of finding such examples is
by perturbing an arbitrary image to the target confidence (e.g., pCorgi = pBread = 0.5),
as shown in (A). However, such examples give little insights into the typical model
behavior because they are extremely unlikely in realistic situations. Bayes-TrEx
explicitly considers a data distribution (gray shade on the right plots) and finds in-
distribution examples in a particular level set (e.g., likely Corgi (B), likely Bread (D),
or ambivalent between Corgi and Bread (C)). Upper right: the classifier level set of
pCorgi = pBread = 0.5 overlaid on the data distribution. Example (A) is unlikely to
be sampled by Bayes-TrEx due to near-zero density under the distribution, while
example (C) is likely to be. Lower right: sampling directly from the true posterior is
infeasible, so Bayes-TrEx includes a relaxation by “widening” the level set.

and CLEVR test sets. We find few such test set examples meet these constraints, and
the majority of these can be attributed to mislabeling in the dataset collection pipeline
rather than misclassification by the model. In contrast, Bayes-TrEx consistently
finds more highly confident misclassified and ambivalent examples, which enables
more flexible and comprehensive model inspection and understanding.

Given the instances identified in this transparency-by-example stage, we can consider
interpretability analysis as a downstream process, to find why the behavior occurs,
in addition to what the behavior is. For example, Figure 6-2 demonstrated that
the reason for a high-confidence failure (with 97% confidence, the image contains a
sphere) of a visual recognition model is due to the confusion of the small red cylinder
as a sphere.
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P(1 sphere) = 0.1% Saliency Map P(1 sphere) = 97.1% 

Figure 6-2: Bayes-TrEx finds a CLEVR scene which is incorrectly classified as
containing a sphere. The generated example (left) is composed of only cylinders
and cubes, but the classifier is 97.1% confident this scene contains one sphere. The
SmoothGrad [143] saliency map highlights the small red cylinder as the object that
is confused for a sphere. When we remove it, the classifier’s confidence that the scene
contains one sphere drops to 0.1%.

6.2 Related Work

Model Testing TensorFuzz [118] is a fuzzing test framework for neural net-
works which finds inputs that achieve a wide coverage of user-specified constraints.
TensorFuzz is similar to Bayes-TrEx in that both methods aim to find examples
that elicit certain model behaviors. While TensorFuzz is designed to find rare in-
puts that trigger edge cases such as numerical errors, Bayes-TrEx finds common,
in-distribution examples. As such, Bayes-TrEx is more suitable to help humans
develop a correct mental model of the classifier. Scenic [45] is a domain-specific
language for model testing by generating failure-inducing examples. While Bayes-
TrEx is in part inspired by Scenic, its formulation is more flexible.

Natural Adversarial Examples One Bayes-TrEx use case is uncovering high-
confidence classification failures in the data distribution. This idea is related to,
but different from, natural adversarial attacks [171]. Most adversarial attacks inject
crafted high-frequency information to mislead a trained model [51, 115, 148], but
such artifacts are non-existent in natural images. Zhao et al. [171] instead proposed
a method to find natural adversarial examples by performing the perturbation in
the latent space of a GAN. While this method finds an example which looks like
a specific input, Bayes-TrEx finds high-confidence misclassifications in the entire
data distribution.

Confidence in Neural Networks Bayes-TrEx can also be used to detect over-
confidence in neural networks. An overconfident neural network [55] makes many
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mistakes with disproportionately high confidence. While many approaches aim to
address this network overconfidence problem [19, 46, 93, 149], Bayes-TrEx is com-
plementary to these efforts. Rather than altering the confidence of a neural network,
it instead infers examples of a particular confidence. If the model is overconfident, it
may return few, if any, samples with ambivalent predictions. At the same time, it may
find many misclassifications with high confidence. In our experiments (Section 6.4.9),
we discover that the popular adversarial discriminative domain adaptation (ADDA)
technique produces a more overconfident model than the baseline.

6.3 Methodology

Given a classifier 𝑓 : 𝑋 → ∆𝐾 which maps a data point to the probability simplex of
𝐾 classes, the goal is to find an input x ∈ 𝑋 in a given data distribution 𝑝(x) such
that 𝑓(x) = p for some prediction confidence p ∈ ∆𝐾 . We consider the problem of
sampling from the posterior

𝑝(x|𝑓(x) = p) ∝ 𝑝(x) 𝑝(𝑓(x) = p|x). (6.1)

A common approach to posterior sampling is to use Markov Chain Monte-Carlo
(MCMC) methods [23]. However, when the measure of the level set {x : 𝑓(x) = p} is
small or even zero, MCMC sampling is infeasible: the posterior being zero everywhere
outside of the level set makes it unlikely for a random-walk Metropolis sampler to
land on x with non-zero posterior [58], and the gradient being zero everywhere outside
of the level set means that a Hamiltonian Monte Carlo sampler does not have the
necessary gradient guidance toward the level set [113].

We relax the formulation by “widening” the level set and accepting x when 𝑓(x) is
close to the target p (Figure 6-1). Specifically, for hyper-parameter 𝜎 that sets the
amount of widening, we introduce a random vector u = [𝑢1, . . . , 𝑢𝐾 ]

𝑇 , distributed as

𝑢𝑖|x ∼ 𝒩
(︀
𝑓(x)𝑖, 𝜎

2
)︀
. (6.2)

Instead of directly sampling from Equation 6.1, we sample from the new posterior:

𝑝(x|u = u*) ∝ 𝑝(x)𝑝(u = u*|x), (6.3)

u* = p. (6.4)

The hyper-parameter 𝜎 controls the peakiness of the relaxed posterior. A smaller 𝛼
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makes it closer to the true posterior and makes the distribution peakier and harder
to sample, while a larger 𝛼 makes it closer to the data distribution 𝑝(x) and easier to
sample. As 𝜎 goes to 0, it approaches the true posterior. Formally,

lim
𝜎→0

𝑝(x|u = u*) = 𝑝(x|𝑓(x) = p). (6.5)

While the formulation in Equation 6.2 is applicable to arbitrary confidence p, the
dimension of u is equal to the number of classes, which poses scalability issues for
large numbers of classes. For a wide range of interesting use cases of Bayes-TrEx,
we can use the following reductions:

1. Highly confident in class 𝑖: p𝑖 = 1,p−𝑖 = 0. We have

𝑢|x ∼ 𝒩
(︀
𝑓(x)𝑖, 𝜎

2
)︀
, 𝑢* = 1. (6.6)

2. Ambivalent between class 𝑖 and 𝑗: p𝑖 = p𝑗 = 0.5, p−𝑖,𝑗 = 0. We have

𝑢1|x ∼ 𝒩
(︀
|𝑓(x)𝑖 − 𝑓(x)𝑗|, 𝜎2

1

)︀
, (6.7)

𝑢2|x ∼ 𝒩 (min(𝑓(x)𝑖, 𝑓(x)𝑗)−max
𝑘 ̸=𝑖,𝑗

𝑓(x)𝑘, 𝜎
2
2), (6.8)

𝑢*
1 = 0, 𝑢*

2 = 0.5. (6.9)

𝜎1 and 𝜎2 are hyperparameters.

3. Uniformly ambivalent among all classes: p𝑖 = 1/𝐿 for all 𝑖. We have:

𝑢|x ∼ No(max
𝑖

𝑓(x)𝑖 −min
𝑗

𝑓(x)𝑗, 𝜎
2), (6.10)

𝑢* = 0. (6.11)

In addition, most high dimensional data distributions, such as those for images, are
implicitly defined by a transformation 𝑔 : 𝑍 → 𝑋 from a latent distribution 𝑝(z).
Consequently, given

x = 𝑔(z), (6.12)

u|z ∼ 𝒩 (𝑓(x), 𝜎2), (6.13)

𝑝(z|u = u*) ∝ 𝑝(z)𝑝(u = u*|z), (6.14)

Bayes-TrEx samples z according to Equation 6.14 and reconstruct the example
x = 𝑔(z) for model inspection.
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6.4 Experiments

6.4.1 Overview

A key strength of Bayes-TrEx is the ability to evaluate a classifier on a data dis-
tribution P𝐷, independent of its training distribution P𝐶 . We demonstrate the versa-
tility of Bayes-TrEx on four relationships between P𝐷 and P𝐶 (Figure 6-3). With
P𝐶 = P𝐷 (Figure 6-3(a)), Section 6.4.4 and 6.4.5 present examples that trigger high
and ambivalent model confidence and Section 6.4.6 presents examples that interpolate
between two classes. In Section 6.4.7, we consider P𝐷 with narrower support than P𝐶

(Figure 6-3(b)), where the support of P𝐷 excludes examples from a particular class.
In this case, high-confidence examples – as judged by the classifier – correspond to
high-confidence misclassifications. In Section 6.4.8 and 6.4.9, we analyze the classi-
fier 𝐶 for novel class extrapolation and covariate shift behaviors with overlapping or
disjoint supports of P𝐶 and P𝐷 (Figure 6-3(c, d)). Representative results are in the
main text; further results are in the appendix.

Figure 6-3: Different relations between the classifier training distribution (P𝐶 , red)
and Bayes-TrEx data distribution (P𝐷, yellow). (a) P𝐶 and P𝐷 are equal. (b) The
support of P𝐷 is a subset of that of P𝐶 . (c) P𝐷 and P𝐶 have overlapping supports.
(d) Supports of P𝐶 and P𝐷 are disjoint.

6.4.2 Datasets, Training and Inference Details

We evaluate Bayes-TrEx on rendered images (CLEVR) and organic datasets (MNIST
and Fashion-MNIST). For all CLEVR experiments, we use the pre-trained classifier
distributed by the original authors1. The transition kernel uses a Gaussian proposal
for the continuous variables (e.g., 𝑥-position) and categorical proposal for the dis-
crete variables (e.g., color), both centered around and peaked at the current value.
For (Fashion-)MNIST experiments, architectures and training details are described

1https://github.com/facebookresearch/clevr-iep
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Model Dataset FID Model Dataset FID

VAE
MNIST 72.33

GAN
MNIST 11.83

Fashion-MNIST 87.89 Fashion-MNIST 29.44

Table 6.1: Fréchet Inception Distance (FID) for VAE and GAN models trained on
the entire dataset. A lower value indicates higher quality. Appendix 6.6.2 presents
the statistics for all models.

in Appendix 6.6.1. For covariate shift analysis, we train ADDA and baseline models
using the code provided by the authors2.

CLEVR images are rendered from scene graphs, on which we define the latent distri-
bution 𝑝(z). Since the (Fashion-)MNIST groundtruth data distribution is unknown,
we estimate it using a VAE or GAN with unit Gaussian 𝑝(z). These learned data
distribution representations have known limitations, which may affect sample qual-
ity [8]. Table 6.1 lists the Fréchet Inception Distance (FID) [63] for two VAE and
GAN models, with the full table in Appendix 6.6.2. The FID scores show the GANs
generate more representative samples than the VAEs.

We consider two MCMC samplers: random-walk Metropolis (RWM) and Hamiltonian
Monte Carlo (HMC). We use the former in CLEVR where the rendering function is
non-differentiable, and the latter for (Fashion-)MNIST. For HMC, we use the No-
U-Turn sampler [65, 113] implemented in the probabilistic programming language
Pyro [18]. We choose 𝜎 = 0.05 for all experiments. Alternatively, 𝜎 can be annealed
to gradually reduce the relaxation.

Computing stopping criteria for MCMC methods is an open problem, usually requir-
ing a gold standard inference algorithm [34] or specific posterior distribution prop-
erties, such as log-concavity [52]. As neither of these requirements are met for our
domains, we select stopping criteria based on heuristic performance and cost of com-
pute. CLEVR scenes require GPU-intensive rendering, so we stop after 500 samples.
(Fashion-)MNIST samples are cheaper to generate, so we stop after 2,000 samples.
Empirically, we find each sampling step takes 3.75 seconds for CLEVR, 1.18s for
MNIST, and 1.96s for Fashion-MNIST, all on a single NVIDIA GeForce 1080 GPU.

6.4.3 Quantitative Evaluation

We first evaluate the quality of Bayes-TrEx samples by assessing whether the clas-
sifier’s prediction confidence matches the specified target on the generated examples.

2https://github.com/erictzeng/adda
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Table 6.2 presents the mean and standard deviation of the confidence on a selection
of representative settings, and Appendix 6.6.3 lists the full set of such evaluations.
In general, the prediction confidences are tightly concentrated around the target,
indicating sampler success.

Use Case Dataset Target Prediction Confidence

High Conf.
MNIST p4 = 1 1.00 ± 0.01
Fashion pCoat = 1 0.98 ± 0.02
CLEVR p2 Blue Spheres = 1 0.89 ± 0.25

Ambivalent
MNIST p1 = p7 = 0.5 0.49± 0.02, 0.49± 0.03

Fashion pT-shirt = pDress = 0.5 0.48± 0.02, 0.48± 0.02

Interpolation
MNIST p8 = 0.6,p9 = 0.4 0.58± 0.04, 0.37± 0.04

Fashion pT-shirt = 0.2,pTrousers = 0.8 0.17± 0.04, 0.79± 0.04

Misclassified
MNIST p8 = 1 0.98 ± 0.02
Fashion pBag = 1 0.97 ± 0.03
CLEVR p1 Cube = 1 0.93 ± 0.06

Extrapolation
MNIST p6 = 1 1.00 ± 0.01
Fashion pSandal = 1 1.00 ± 0.01
CLEVR p1 Cylinder = 1 0.96 ± 0.03

Domain Adapt. MNIST p5 = 1 1.00 ± 0.01

Table 6.2: Mean and standard deviation of the prediction confidence of the samples.
Reported values are for the target class, or two target classes in ambivalent confidence
and confidence interpolation cases. Appendix 6.6.3 presents the complete statistics.

6.4.4 High Confidence

(a) p5 Spheres = 95.7% (b) p2 Blue Sph. = 91.1% (c) MNIST (d) Fashion-MNIST

Figure 6-4: High-confidence samples. (a, b) CLEVR. (c) MNIST, digits 0-3. (d)
Fashion-MNIST, left to right: T-shirt, trousers, pullover and dress. More examples
in Appendix 6.6.4.

As an initial smoke test, we evaluate Bayes-TrEx by finding highly confident ex-
amples. (Fashion-)MNIST data distributions are learned by GAN. Figure 6-4 depicts
samples on the three datasets. Additional examples are in Appendix 6.6.4.
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6.4.5 Ambivalent Confidence

Next, we find ambivalent (Fashion-)MNIST examples for which the classifier has sim-
ilar prediction confidence between two classes, using data distributions learned by
a VAE. Figure 6-5 shows ambivalent examples from each pair of classes (e.g., 0v1,
0v2, ..., 8v9). Note the examples presented are ambivalent from the classifier’s per-
spective, though some may be readily classified by a human. Not all pairs result
in successful sampling: for example, we were unable to find an ambivalent exam-
ple with equal prediction confidence between the visually dissimilar classes 0 and 7.
These ambivalent examples are useful for visualizing and understanding class bound-
aries; Appendix 6.6.5 presents a supporting class boundary latent space visualization.
Blended ambivalent examples have previously been shown to be useful for data aug-
mentation [150]. While these generated ambivalent examples may be similarly useful,
we leave this exploration to future work.

Figure 6-5: Pairwise ambivalent example matrix. Each entry of the matrix is an
ambivalent MNIST or Fashion-MNIST example for the classes on its row and column.
Blacked-out cells indicate sampling failures. Examples on the outermost edges of the
matrix are class representations (e.g., 0-9 for MNIST).

Bayes-TrEx can also find examples which are ambivalent across more than two
classes; Figure 6-6 presents samples that are equally ambivalent across all 10 MNIST
classes. All these images appear to be very blurry and not very realistic. This is
intuitive: even for a human, it would be hard to write a digit in such a way that it is
equally unrecognizable across all 10 classes.

For ambivalent examples, we observed only rare successes with data distributions
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Figure 6-6: Samples of uniformly ambivalent predictions.

learned by a GAN, which generates sharper and more visually realistic images than
a VAE. There are two candidate explanations:

1. GAN-distributions prevent efficient MCMC sampling.

2. The classifier rarely makes ambivalent predictions on sharp and realistic images.

To experimentally check the second explanation, we train a classifier to be consistently
ambivalent between class 𝑖 and 𝑖+1 for an image of digit 𝑖 (wrapping around at 10 = 0)
using the following KL-divergence loss:

𝑙(𝑦, 𝑓(x)) = KL(p𝑦, 𝑓(x)), (6.15)

p𝑦,𝑖 =

⎧⎨⎩0.5 𝑖 = 𝑦 or 𝑖 = (𝑦 + 1) mod 10,

0 otherwise.
(6.16)

Using this classifier, we sample ambivalent examples for 0v1, 1v2, ..., 9v0. Sampling
succeeds for all ten pairs, even when using the same GAN model that rarely succeeded
in the prior experiment. Figure 6-7 presents the 0v1 samples and predicted confidence
by this modified classifier, and the remaining pairs are visualized in Appendix 6.6.6.
Given this sampling success, we conclude that the second explanation is correct.

Figure 6-7: 0v1 ambivalent samples and confidence plot with the GAN distribution
and always ambivalent classifier.
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Bayes-TrEx is also unable to generate ambivalent examples for CLEVR with the
manually defined data distribution. Given that the pre-trained classifier only achieves
≈ 60% accuracy, the result suggests that the model is likely overconfident, which has
previously been observed in similar settings [83].

6.4.6 Confidence Interpolation

Bayes-TrEx can find examples that interpolate between classes. In Figure 6-8, we
show MNIST samples which interpolate from (𝑃8 = 1.0, 𝑃9 = 0.0) to (𝑃8 = 0.0, 𝑃9 =

1.0) and Fashion-MNIST samples from (𝑃T-shirt = 1.0, 𝑃Trousers = 0.0) to (𝑃T-shirt =

0.0, 𝑃Trousers = 1.0) over intervals of 0.1, with a VAE-learned data distribution.

The interpolation between two very different classes reveal insights into the model
behavior. For example, the interpolation from 8 to 9 generally shrinks the bot-
tom circle toward a stroke, which is the key difference between digits 8 and 9. For
Fashion-MNIST, the presence of two legs is important for trousers classification, even
appearing in samples with (pT-shirt = 0.9,pTrousers = 0.1) (second column). By con-
trast, a wider top and the appearance of sleeves are important properties for T-shirt
classification. These two trends result in most of the interpolated samples having a
short sleeve on the top and two distinct legs on the bottom.

6.4.7 High-Confidence Failures

With neural networks being increasingly used for high-stakes decision making, high-
confidence failures are one area of concern, as these failures may go unnoticed. Bayes-
TrEx can find such failures. Specifically, if the data distribution (Figure 6-3(b)) does
not include a particular class, then the resulting high-confidence examples correspond
to high-confidence misclassifications for that class. For example, in Figure 6-9(a), the
CLEVR classifier is highly confident that there is one cube though there is no cube
in the image. In Appendix 6.6.11, the saliency map for Figure 6-9(a) reveals that
classifier mistakes the front shiny red cylinder for a cube. Removing this cylinder
causes the confidence to drop to 29.0%. In addition, such high-confidence failures can
also be used for data augmentation to increase network reliability [45].

For (Fashion-)MNIST, a GAN is trained on all data without a single class, resulting in
the learned data distribution excluding the given class. Figs. 6-9(c) and 6-9(d) depict
high-confidence misclassifications for digits 0-4 in MNIST and sandal, shirt, sneaker,
bag, and ankle boot in Fashion-MNIST, respectively. By evaluating these examples,
we can assess how well human-aligned a classifier is. For example, for MNIST, some

122



Figure 6-8: Confidence interpolation between digit 8 and 9 for MNIST and between
T-shirt and trousers for Fashion-MNIST. Each of the 11 columns show samples of
confidence ranging from [pclass a = 1.0, pclass b = 0.0] (left) to [pclass a = 0.0, pclass b =
1.0] (right), with an interval of 0.1. Some confidence plots are shown in the middle.

thin 8s are classified as 1s and particular styles of 6s and 9s are classified as 4s. These
results seem intuitive, as a human might make these same mistakes. Likewise, for
Fashion-MNIST, most failures come from semantically similar classes, e.g. sneaker
←→ ankle boot. Less intuitively, however, chunky shoes are likely to be classified as
bags. Additional visualizations are presented in Appendix 6.6.7.

6.4.8 Novel Class Extrapolation

It is important to understand the novel class extrapolation behavior of a model before
deployment. For example, during training an autonomous vehicle might learn to safely
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(a) p1 Cube = 93.5% (b) p2 Cylinders = 90.2% (c) MNIST (d) Fashion-MNIST

Figure 6-9: High-confidence classification failures. (a): CLEVR, 1 Cube. Note that
no cube is present in the sample. (b): CLEVR, 2 Cylinders – again, containing no
cylinders. (c) MNIST failures for digits 0-4. 0s are composed of 6s; 1s of 8s; 2s of
0s, and so on. (d) Fashion-MNIST failures for sandal, shirt, sneaker, bag, and ankle
boot. Additional examples are presented in Appendix 6.6.7.

operate around pedestrians, cyclists, and cars. But can we predict how the vehicle
will behave when it encounters a novel class, like a tandem bicycle? Bayes-TrEx
can be used to understand such behaviors by sampling high-confidence examples with
a data distribution that contains novel classes, while excluding the true target classes
(Figure 6-3(c, d)).

For CLEVR, we add a novel cone object to the data distribution and remove the
existing cube from it. We sample images that the classifier is confident to include
cubes, shown in Figure 6-10 (a, b). A saliency map analysis in Appendix 6.6.11
confirms that the classifier indeed mistakes these cones for cubes. In Appendix 6.6.8,
we assess CLEVR’s novel class extrapolation for cylinders and spheres, and similarly
show the model readily confuses cones for these classes as well.

For MNIST and Fashion-MNIST, we train the respective classifiers on digits 0, 1, 3,

(a) p1 Cube = 98.5% (b) p5 Cubes = 92.5% (c) MNIST (d) Fashion-MNIST

Figure 6-10: Novel class extrapolation examples. (a, b): For CLEVR, the novel cone
objects are mistaken for cubes. (c, d): For (Fashion-)MNIST, we train classifiers on
subsets of the data (digits 0, 1, 3, 6, 9 and pullover, dress, sandal, shirt, and ankle
boot), and train GANs with the excluded data. Samples for which the classifier is
highly confident (≈ 99%) in several target classes are shown (e.g., targets 0, 1, and 9
for MNIST). Additional examples are presented in Appendix 6.6.8.
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6, 9 and pullover, dress, sandal, shirt and ankle boot classes. We train GANs using
only the excluded classes (e.g., digits 2, 4, 5, 7, 8 for MNIST) and find examples
where the classifier has high prediction confidence, as shown in Figure 6-10 (c, d). For
MNIST, there are few reasonable extrapolation behaviors, most likely due to the visual
distinctiveness between digits. By comparison, some Fashion-MNIST extrapolations
are expected, such as confusing the unseen sneaker class for sandals and ankle boots.
However, the classifier also confidently mistakes various styles of bags as sandals,
shirts, and ankle boots. Appendix 6.6.8 contains additional visualizations.

6.4.9 Covariate Shift

Finally, we use Bayes-TrEx to analyze covariate shift behaviors. We reproduce
the SVHN [114] → MNIST experiment studied by Tzeng et al. [153]. We train two
classifiers, a baseline classifier on labeled SVHN data only, and the ADDA classifier
on labeled SVHN data and unlabeled MNIST data. Indeed, covariate shift improves
classification accuracy: 61% for the baseline classifier on MNIST vs. 71% for the
ADDA classifier.

But is this the whole story? To study model performance in the high-confidence
range, we use Bayes-TrEx to generate high-confidence examples for both classifiers
with the MNIST data distribution learned by GAN, as shown Figure 6-11. It appears
the ADDA model makes more mistakes in these images – for example, in the 2nd
column in Figure 6-11(b), all images where the classifier is highly confident to be 1 are
actually 0s. To further study this, we hand-label 10 images per class and compute the
classifier accuracy on them. Table 6.3 shows the accuracy per digit class, as well as
the overall accuracy. This analysis confirms the baseline model is more accurate than
the ADDA model on these samples, suggesting that ADDA is more overconfident
than the baseline. While this result does not contradict the higher overall accuracy
of ADDA, it does caution against deploying such domain adaptation models without
further inspection and confidence calibration assessment.

0 1 2 3 4 5 6 7 8 9 All
Baseline 1.0 0.6 1.0 0.7 0.5 0.9 0.9 0.7 1.0 0.7 0.80
ADDA 0.9 0.0 0.8 0.9 0.2 1.0 0.8 1.0 1.0 0.6 0.72

Table 6.3: Per-digit and overall accuracy among high-confidence MNIST samples for
the baseline and ADDA models. While ADDA has higher overall accuracy (0.71
vs. 0.61), it performs worse on high-confidence samples (0.72 vs. 0.80). This suggests
overconfidence.
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(a) Baseline examples (b) ADDA examples

Figure 6-11: Highly confident examples for each class (0 to 9) of the baseline model
and ADDA model. Additional examples are presented in Appendix 6.6.9.

Figure 6-12: Test set ambivalent examples for (Fashion-)MNIST. Compared to those
found by Bayes-TrEx in Figure 6-5, test set examples have much poorer coverage.

6.4.10 Test-Set Comparison

Standard model evaluations are typically performed on the test set. While inspecting
test set examples is not an apples-to-apples comparison for all Bayes-TrEx use cases
(e.g., covariate shift), we study the comparable ones.

Ambivalent Confidence

We find ambivalent examples in the (Fashion-)MNIST datasets where the classifier has
confidence in [40%, 60%] for two classes. Out of 10,000 test examples on each dataset,
we find only 12 MNIST examples across 10 class pairings, and 162 Fashion-MNIST
examples across 12 pairings, as shown in Figure 6-12. By comparison, Bayes-TrEx
found ambivalent examples for 38 MNIST pairings and 28 Fashion-MNIST pairings
(cf. Figure 6-5).
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High-Confidence Failures

We collect and inspect highly confident test set misclassifications (confidence ≥ 85%).
For CLEVR, out of 15, 000 test images, the baseline discovers between 0 and 15
examples for each target. Notably, there are no 2-cylinder misclassifications in the
test set, but Bayes-TrEx successful generated some (Figure 6-9(b)).

From the 10,000 test examples in (Fashion-)MNIST, 84 MNIST images and 802
Fashion-MNIST images were confidently misclassified. Upon closer inspection, how-
ever, we find that the a large fraction of the failures are actually due to mislabeling,
rather than misclassification. We manually relabel all 84 MNIST misclassifications
and ten Fashion-MNIST misclassifications per class, except for the trousers class
which only has 3 misclassifiations. We find that the 60 out of 84 MNIST images 42
out of 93 Fashion-MNIST images are mislabeled, rather than misclassified.

Table 6.4 gives detailed statistics of the number of genuinely misclassified examples.
Given the scene graph data representation, all CLEVR misclassifications are genuine.
Table 6.5 visualizes some misclassified vs. mislabeled images, with additional classes
in Appendix 6.6.10. Identifying mislabeled examples may be useful for correcting the
dataset, but is not for our task of model understanding.

CLEVR
class 1 Sph. 1 Cube 1 Cyl. 2 Cyl.

5 8 15 0
Total

count 28/28

MNIST
class 0 1 2 3 4 5 6 7 8 9

3 3 0 5 3 1 3 4 0 2
0 1 2 3 4 5 6 7 8 9
2 0 9 4 9 1 3 2 1 10

Total
count 24/84

Fashion
class Total
count 51/93

Table 6.4: Number of genuine high-confidence misclassifications from the test set.
Counts for CLEVR and MNIST are for the entire test set; counts for Fashion-MNIST
are computed from ten random high-confidence misclassifications per class, except for
trousers which only has 3 misclassifications. Fashion-MNIST classes 0-9 corresponds
to T-shirt, trousers, pullover, dress, coat, sandal, shirt, sneaker, bag and ankle boot,
in that order.

Novel Class Extrapolation

In Section 6.4.8 analysis, we find that the model mistakes some bags for ankle boots.
Interestingly, this propensity is not evident from test set evaluations: the test set
confusion matrix in Appendix 6.6.10 shows that no bags are misclassified as ankle
boots. This provides further evidence of the value of holistic evaluations with Bayes-
TrEx, beyond standard test set evaluations.
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Class Cause Images

0
Misclassified
Mislabeled

1
Misclassified
Mislabeled

2
Misclassified ∅
Mislabeled

Trouser
Misclassified ∅
Mislabeled

Bag
Misclassified
Mislabeled

Table 6.5: High-confidence misclassifications from the test set. The majority are due
to incorrect ground truth labels, not classifier failures. Full table of all classes in
Appendix 6.6.10.

6.5 Discussion and Conclusion

We presented Bayes-TrEx, a Bayesian inference approach for generating new exam-
ples that trigger various model behaviors. These examples can be further analyzed
with downstream interpretability methods (Figure 6-2 and Appendix 6.6.11). To
make Bayes-TrEx easier for model designers to use, future work should develop
methods to cluster and visualize trends in the generated examples, as well as to
estimate the overall coverage of the level set.

For organic data, the underlying data distributions can be learned with VAEs or
GANs. These have known limitations in sample diversity [8] and are computationally
expensive to train, especially for high resolution images. In principle, Bayes-TrEx
is agnostic to the distribution learner form and can benefit from future research in
this area. Applying MCMC sampling to high dimensional latent spaces is an open
problem, so Bayes-TrEx is currently limited to low dimensional latent spaces.

Finally, while we only analyze classification models with Bayes-TrEx, it also has
the potential for analyzing structured domains such as machine translation or robotic
control. Indeed, after the appendices of this work, we present RoCUS, an extension
of Bayes-TrEx to analyze robotic controllers.
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6.6 Appendix

6.6.1 Network Architecture for MNIST & Fashion-MNIST

For all experiments on MNIST and Fashion-MNIST, the VAE architecture is shown
in Table 6.6 (left), and the GAN architecture is shown in Table 6.6 (right). For
all experiments on MNIST and Fashion-MNIST except for the domain adaptation
analysis, the classifier architecture is shown in Table 6.7 (left). The classifier used
in the domain adaptation analysis is the LeNet architecture, following the provided
source code, shown in Table 6.7 (right). VAEs and GANs are trained with binary
cross entropy loss. Classifiers are trained with negative log likelihood loss.

Encoder input: 28× 28× 1

Flatten
Fully-connected 784× 400

ReLU
Mean: Fully-connected 400× 5

Log-variance: Fully-connected 400× 5

Decoder input: 5 (latent dimension)
Fully-connected 5× 400

ReLU
Fully-connected 400× 784

Reshape 28× 28× 1

Sigmoid

Input: 5 (latent dimension)
Reshape 1× 1× 5

Conv-transpose: 512 filters, size=4× 4, stride = 1
Batch-norm, ReLU

Conv-transpose: 256 filters, size=4× 4, stride = 2
Batch-norm, ReLU

Conv-transpose: 128 filters, size=4× 4, stride = 2
Batch-norm, ReLU

Conv-transpose: 64 filters, size=4× 4, stride = 2
Batch-norm, ReLU

Conv-transpose: 1 filters, size=1× 1, stride = 1
Sigmoid

Table 6.6: Left: VAE architecture; right: GAN architecture.

Input: 28× 28× 1

Conv: 32 filters, size = 3× 3, stride = 1
ReLU

Conv: 64 filters, size = 3× 3, stride = 1
Drop-out, prob = 0.25
Max-pool, size = 2× 2

Flatten
Fully-connected 9216× 128

ReLU
Drop-out, prob = 0.5

Fully-connected 128× 10

Soft-max

Input: 28× 28× 1

Conv: 20 filters, size = 5× 5, stride = 1
ReLU

Max-pool, size = 2× 2

Conv: 50 filters, size = 5× 5, stride = 1
ReLU

Max-pool, size = 2× 2

Flatten
Fully-connected 800× 500

ReLU
Fully-connected 500× 10

Soft-max

Table 6.7: Left: classifier architecture in all experiments except domain adaptation
analysis; right: LeNet classifier architecture in domain adaptation analysis (used in
code released by ADDA authors).
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6.6.2 Fréchet Inception Distance (FID) for VAE and GAN

Table 6.8 extends Table 6.1 in Section 6.4.2 and lists the FID scores for all VAE and
GAN models that we use. These FID scores reveal the GANs are better approxima-
tions of the underlying data distributions. Models trained on “all” data are used for
high confidence, ambivalent confidence, confidence interpolation and domain adapta-
tion settings. Models trained on data “Without [class]” are used for high-confidence
failure settings. Models trained on select classes ({2, 4, 5, 7, 8} and {0, 1, 4, 7, 8})
are used for the novel class extrapolation settings.

GAN MNIST
Data Source FID
All 11.83
Without 0 12.10
Without 1 12.08
Without 2 13.57
Without 3 12.71
Without 4 12.25
Without 5 12.21
Without 6 11.86
Without 7 11.64
Without 8 12.31
Without 9 12.34
{2, 4, 5, 7, 8} 13.45

GAN Fashion-MNIST
Data Source FID
All 29.44
Without 0 28.91
Without 1 31.18
Without 2 30.11
Without 3 28.95
Without 4 30.43
Without 5 27.67
Without 6 29.68
Without 7 28.56
Without 8 30.87
Without 9 29.22
{0, 1, 4, 7, 8} 33.11

VAE MNIST
Data Source FID
All 72.33
Without 0 71.28
Without 1 75.36
Without 2 64.77
Without 3 63.66
Without 4 66.96
Without 5 63.31
Without 6 67.64
Without 7 62.45
Without 8 64.14
Without 9 66.57
—– —–

VAE Fashion-MNIST
Data Source FID
All 87.89
Without 0 89.21
Without 1 92.02
Without 2 91.20
Without 3 85.51
Without 4 88.38
Without 5 84.17
Without 6 85.58
Without 7 84.93
Without 8 83.66
Without 9 81.48
— —

Table 6.8: Fréchet Inception Distance (FID) scores for all learned data distributions;
a lower score indicates a better distribution fit. Results are computed across 1000
samples. Fashion-MNIST classes are 0: T-shirt, 1: Trouser, 2: Pullover, 3: Dress, 4:
Coat, 5: Sandal, 6: Shirt, 7: Sneaker, 8: Bag, and 9: Ankle Boot.
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6.6.3 Quantitative Prediction Confidence Summary

Table 6.9, 6.10, and 6.11 present the extension of Table 6.2 in Section 6.4.3. These
results show that the inferred samples have predicted confidence closely matching
the specified confidence targets. This indicates the MCMC methods used by Bayes-
TrEx are successful for the tested domains and scenarios. Queries for 5 Cubes in
the novel class extrapolation CLEVR experiments use a stopping criterion of 1500
samples instead of the standard 500. Averages across 10 inference runs are reported.

Target Prediction Confidence
p0 = 1 0.999 ± 0.006
p1 = 1 0.999 ± 0.003
p2 = 1 0.999 ± 0.006
p3 = 1 0.999 ± 0.005
p4 = 1 0.998 ± 0.008
p5 = 1 0.999 ± 0.006
p6 = 1 0.998 ± 0.007
p7 = 1 0.998 ± 0.007
p8 = 1 0.999 ± 0.004
p9 = 1 0.998 ± 0.007
pT-shirt = 1 0.991 ± 0.016
pTrouser = 1 0.999 ± 0.006
pPullover = 1 0.984 ± 0.019
pDress = 1 0.993 ± 0.008
pCoat = 1 0.983 ± 0.021
pSandal = 1 0.998 ± 0.008
pShirt = 1 0.987 ± 0.020
pSneaker = 1 0.994 ± 0.016
pBag = 1 0.999 ± 0.006
pAnkle Boot = 1 0.996 ± 0.012
p5 Spheres = 1 0.943 ± 0.020
p2 Blue Spheres = 1 0.892 ± 0.245

Target Prediction Confidence
p0 = 1 0.981 ± 0.027
p1 = 1 0.953 ± 0.028
p2 = 1 0.968 ± 0.028
p3 = 1 0.969 ± 0.027
p4 = 1 0.955 ± 0.030
p5 = 1 0.990 ± 0.018
p6 = 1 0.970 ± 0.026
p7 = 1 0.968 ± 0.029
p8 = 1 0.982 ± 0.024
p9 = 1 0.983 ± 0.022
pT-shirt = 1 0.964 ± 0.029
pTrouser = 1 (sample failure)
pPullover = 1 0.886 ± 0.027
pDress = 1 0.970 ± 0.026
pCoat = 1 0.938 ± 0.030
pSandal = 1 0.968 ± 0.030
pShirt = 1 0.938 ± 0.032
pSneaker = 1 0.969 ± 0.028
pBag = 1 0.967 ± 0.026
pAnkle Boot = 1 0.971 ± 0.027
p1 Cube = 1 0.929 ± 0.062
p1 Cylinder = 1 0.972 ± 0.021
p1 Sphere = 1 0.843 ± 0.266
p2 Cylinders = 1 0.545 ± 0.230

Table 6.9: Prediction confidence for samples on high-confidence examples (left) and
high confidence misclassifications (right).
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Target Prediction Confidence
p8 = 0.0,p9 = 1.0 (0.002± 0.006, 0.990± 0.016)

p8 = 0.1,p9 = 0.9 (0.030± 0.039, 0.936± 0.051)

p8 = 0.2,p9 = 0.8 (0.170± 0.039, 0.788± 0.040)

p8 = 0.3,p9 = 0.7 (0.275± 0.041, 0.682± 0.040)

p8 = 0.4,p9 = 0.6 (0.378± 0.040, 0.578± 0.040)

p8 = 0.5,p9 = 0.5 (0.477± 0.039, 0.477± 0.039)

p8 = 0.6,p9 = 0.4 (0.581± 0.038, 0.374± 0.039)

p8 = 0.7,p9 = 0.3 (0.680± 0.041, 0.275± 0.039)

p8 = 0.8,p9 = 0.2 (0.788± 0.040, 0.167± 0.041)

p8 = 0.9,p9 = 0.1 (0.926± 0.050, 0.039± 0.040)

p8 = 1.0,p9 = 0.0 (0.989± 0.016, 0.002± 0.007)

Target Prediction Confidence
pT-shirt = 0.0,pTrousers = 1.0 (0.001± 0.004, 0.995± 0.012)

pT-shirt = 0.1,pTrousers = 0.9 (0.026± 0.035, 0.950± 0.050)

pT-shirt = 0.2,pTrousers = 0.8 (0.166± 0.040, 0.791± 0.041)

pT-shirt = 0.3,pTrousers = 0.7 (0.275± 0.037, 0.686± 0.038)

pT-shirt = 0.4,pTrousers = 0.6 (0.379± 0.038, 0.586± 0.038)

pT-shirt = 0.5,pTrousers = 0.5 (0.436± 0.040, 0.459± 0.040)

pT-shirt = 0.6,pTrousers = 0.4 (0.583± 0.038, 0.382± 0.037)

pT-shirt = 0.7,pTrousers = 0.3 (0.685± 0.039, 0.281± 0.040)

pT-shirt = 0.8,pTrousers = 0.2 (0.790± 0.037, 0.177± 0.037)

pT-shirt = 0.9,pTrousers = 0.1 (0.936± 0.045, 0.029± 0.041)

pT-shirt = 1.0,pTrousers = 0.0 (0.985± 0.019, 0.000± 0.003)

Table 6.10: (Fashion-)MNIST confidence interpolation.

Target Prediction Confidence
p0 = 1 0.976 ± 0.025
p1 = 1 0.988 ± 0.186
p3 = 1 0.987 ± 0.020
p6 = 1 0.989 ± 0.018
p9 = 1 0.995 ± 0.013
pPullover = 1 0.991 ± 0.016
pDress = 1 0.994 ± 0.013
pSandal = 1 0.995 ± 0.013
pShirt = 1 0.994 ± 0.012
pAnkle Boot = 1 0.993 ± 0.015
p1 Cube = 1 0.983 ± 0.014
p1 Cylinder = 1 0.959 ± 0.031
p1 Sphere = 1 0.969 ± 0.022
p5 Cubes = 1 0.921 ± 0.029

Target Prediction Confidence
p0 = 1 0.996 ± 0.011
p1 = 1 0.994 ± 0.014
p2 = 1 0.998 ± 0.008
p3 = 1 0.994 ± 0.015
p4 = 1 0.997 ± 0.010
p5 = 1 0.998 ± 0.007
p6 = 1 0.996 ± 0.011
p7 = 1 0.996 ± 0.011
p8 = 1 0.995 ± 0.013
p9 = 1 0.996 ± 0.012

Table 6.11: Prediction confidence for novel class extrapolation (left) and covariate
shift (right).
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Figure 6-13 shows the pairwise prediction confidence for ambivalent examples.

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

0.437 0.487 0.447 0.481 0.473 0.490 0.482 0.474

0.433 0.490 0.485 0.485 0.455 0.489 0.489 0.483 0.463

0.487 0.489 0.487 0.469 0.481 0.483 0.482 0.303

0.448 0.485 0.486 0.489 0.463 0.483 0.486

0.481 0.484 0.469 0.484 0.484 0.488

0.471 0.456 0.491 0.481 0.458 0.488 0.467

0.492 0.488 0.484 0.463 0.484 0.481 0.476 0.435

0.490 0.486 0.482 0.486 0.457 0.478 0.488

0.482 0.485 0.479 0.487 0.487 0.476 0.477 0.481

0.477 0.464 0.314 0.486 0.467 0.436 0.490 0.484

MNIST

T-shirt
Trousers

Pullover

Dress
Coat

Sandal

Shirt
Sneaker

Bag
Ankle boot

T-shirt
TrousersPulloverDress
Coat
SandalShirt
SneakerBag
Ankle boot

0.487 0.475 0.482 0.486 0.460 0.400

0.488 0.461 0.487 0.472 0.477 0.462 0.459

0.475 0.459 0.483 0.476 0.478 0.436

0.480 0.488 0.476 0.485 0.457

0.475 0.484 0.476 0.479 0.475

0.479 0.476 0.485 0.472 0.496

0.490 0.479 0.477 0.457

0.485 0.478 0.494

0.461 0.467 0.434 0.486 0.473 0.475 0.455 0.480 0.487

0.401 0.460 0.456 0.493 0.494 0.488

Fashion-MNIST

Figure 6-13: Prediction confidence for (Fashion-)MNIST ambivalent examples. For
each class combination, the lower triangle shows the the confidence for the digit
denoted on the horizontal axis, and the upper triangle shows the confidence for the
digit on the vertical axis. For example, for the MNIST class combination 9v0, the
classifier confidence in class 0 is 0.477 (the bottom left entry) while the classifier
confidence in class 9 is 0.474 (the top right entry). Diagonal entries are blank since
they have the same class on row and column. Off-diagonal blank entries indicate that
Bayes-TrEx does not find ambivalent samples for that particular class pair.
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6.6.4 High-Confidence Analysis

Figure 6-14 presents additional high-confidence CLEVR examples and the classifier’s
predictions.

(a) 𝑃5 Sph. = 94.8% (b) 𝑃5 Sph. = 94.5% (c) 𝑃5 Sph. = 94.6% (d) 𝑃5 Sph. = 95.2% (e) 𝑃5 Sph. = 92.0%

(f) 𝑃2 Blue = 96.3% (g) 𝑃2 Blue = 96.1% (h) 𝑃2 Blue = 94.9% (i) 𝑃2 Blue = 96.8% (j) 𝑃2 Blue = 97.8%

Figure 6-14: Top: selected examples classified as containing 5 spheres with high
confidence. Bottom: selected examples classified as containing 2 blue spheres with
high confidence.

Figure 6-15 presents additional high-confidence (Fashion-)MNIST examples.

(a) MNIST (b) Fashion-MNIST

Figure 6-15: High-confidence examples from MNIST and Fashion-MNIST. There are
no misclassifications. MNIST columns represent digit 0 to 9, respectively. Fashion-
MNIST columns represent T-shirt, trousers, pullover, dress, coat, sandal, shirt,
sneaker, bag, and ankle boot, respectively.
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6.6.5 Ambivalent Confidence Analysis

Figure 6-16 presents additional visualizations for two pairs, Digit 1 vs. Digit 7 from
MNIST and T-shirt vs. Pullover from Fashion-MNIST. The confidence plots in the
middle confirm that the neural network is indeed making the ambivalent predictions.
The 𝑡-SNE [101] latent space visualizations at the bottom indicate that the samples lie
around the class boundaries and are also in-distribution (i.e., having close proximity
to those sampled from the prior).

Figure 6-16: Left: ambivalent samples for digit 1 vs. 7 in MNIST. Right: ambivalent
samples for pullover vs. shirt in Fashion-MNIST. Top: 30 sampled images. Middle:
classifier confidence plots on the samples. Bottom: 𝑡-SNE latent space visualization:
green dots represent ambivalent samples from the posterior, red and blue dots rep-
resents samples from the prior that are predicted by the classifier to be either class
of interest, and gray dots represents other samples from the prior. The ambivalent
samples are on the class boundaries.
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6.6.6 Ambivalence with GAN and Modified Classifier

Figure 6-17 shows the ambivalent confidence samples for 0v1, 1v2, ..., 9v0 using
the GAN-learned distribution when the classifier is trained with the custom KL loss
described in Eq. 6.15.

Figure 6-17: Sampling results with an explicitly ambivalent classifier and a GAN-
learned distribution. Top 2 rows: digit 𝑖 vs. 𝑖 + 1 for 𝑖 ∈ {0, 1, 2, 3, 4}. Bottom 2
rows: digit 𝑖 vs. 𝑖+ 1 (mod 10) for 𝑖 ∈ {5, 6, 7, 8, 9}.
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6.6.7 High-Confidence Failure Analysis

Figure 6-18 shows such examples for CLEVR. For each target inference (e.g. “1
Cube”), we exclude objects belonging to the target class from the data distribution.

(a) p1 Cube = 96.0% (b) p1 Cube = 97.2% (c) p1 Cube = 93.5% (d) p1 Cube = 67.3% (e) p1 Cube = 94.5%

(f) p1 Sphere = 95.6% (g) p1 Sphere = 96.6% (h) p1 Sphere = 89.8% (i) p1 Sphere = 99.1% (j) p1 Sphere = 96.5%

(k) p1 Cyl. = 90.4% (l) p1 Cyl. = 98.6% (m) p1 Cyl. = 94.5% (n) p1 Cyl. = 96.5% (o) p1 Cyl. = 98.5%

(p) p2 Cyl. = 85.9% (q) p2 Cyl. = 60.2% (r) p2 Cyl. = 79.4% (s) p2 Cyl. = 48.4% (t) p2 Cyl. = 60.5%

Figure 6-18: High-confidence misclassified examples and their associated prediction
confidences for CLEVR. For each target constraint (e.g., “1 Cube”), objects from
the target class (e.g., cubes) are excluded from the data distribution. The resultant
images are composed entirely of non-target-class objects, (e.g., cylinders and spheres).
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Figure 6-19 presents high-confidence misclassifications for each classes of MNIST,
with digit 0-4 on the top two rows and digit 5-9 on the bottom two rows.

Figure 6-19: Samples and violin plots for high-confidence misclassified examples. Top
two rows: 0-4; bottom two rows: 5-9.
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Figure 6-20 presents high-confidence misclassifications for each classes of Fashion-
MNIST, with T-shirt, trousers pullover, dress and coat on the top two rows and
sandal, shirt, sneaker, bag and ankle boot on the bottom two rows. The confidence
plot for the trousers samples indicates that the sampling is not successful.

Figure 6-20: Samples and violin plots for high-confidence misclassified examples. Top
row: T-shirt, trousers (sample failure), pullover, dress, coat. Bottom row: sandal,
shirt, sneaker, bag, ankle boot.
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6.6.8 Novel Class Extrapolation Analysis

Figure 6-21 shows novel class extrapolation examples for CLEVR.

(a) p1 Sph. = 99.3% (b) p1 Sph. = 95.9% (c) p1 Sph. = 99.3% (d) p1 Sph. = 97.7% (e) p1 Sph. = 97.3%

(f) p1 Cube = 99.2% (g) p1 Cube = 97.5% (h) p1 Cube = 98.7% (i) p1 Cube = 99.0% (j) p1 Cube = 98.7%

(k) p1 Cyl. = 96.9% (l) p1 Cyl. = 99.1% (m) p1 Cyl. = 96.5% (n) p1 Cyl. = 97.2% (o) p1 Cyl. = 99.0%

(p) p5 Cubes = 74.6% (q) p5 Cubes = 89.5% (r) p5 Cubes = 93.3% (s) p5 Cubes = 91.6% (t) p5 Cubes = 89.9%

Figure 6-21: Sampled novel class extrapolation examples and their associated predic-
tion confidences. Similar to high confidence misclassified examples, for each target
constraint (e.g., “1 Cube”), we remove examples of the target class (e.g., cubes) from
the data distribution, but add to the cone object to it, a novel class not present in the
training distribution. 6-21(n) is the only example which by chance does not include
a novel class object.
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Figure 6-22 shows examples for novel-class extrapolation on MNIST. The classifier is
trained on digit 0, 1, 3, 6 and 9, and tested on images generated by a GAN trained
on digit 2, 4, 5, 7 and 8.

Figure 6-22: Samples and confidence plots for MNIST novel class extrapolation for
digits 0, 1, 3, 6 and 9, in that order.

Figure 6-23 shows examples for novel-class extrapolation on Fashion-MNIST. The
classifier is trained on pullover, dress, sandal, shirt and ankle boot, and tested on
images generated by a GAN trained on T-shirt, trousers, coat, sneaker and bag.

Figure 6-23: Samples and confidence plots for Fashion-MNIST novel class extrapola-
tion for pullover, dress, sandal, shirt and ankle boot, in that order.
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6.6.9 Covariate Shift Analysis

Figure 6-24 and 6-25 show additional samples and confidence plots for the baseline
and ADDA model, respectively. Top two rows are for digit 0-4, and bottom two rows
are for digit 5-9.

Figure 6-24: High confident MNIST samples generated for each class as predicted by
the baseline model.

Figure 6-25: High confident MNIST samples generated for each class as predicted by
the ADDA model.
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6.6.10 Test Set Evaluation

Table 6.12 extends Table 6.5 in Section 6.4.10 and includes misclassified vs. mislabeled
images of all (Fashion-)MNIST classes.

Class Misclassified Mislabeled
0
1
2 ∅
3
4
5
6
7
8 ∅
9
Tshirt
Trouser ∅
Pullover
Dress
Coat
Sandal
Shirt
Sneaker
Bag
Boot ∅

Table 6.12: An alternative to using Bayes-TrEx for finding highly confident clas-
sification failures is to evaluate the high confidence example confusion matrix and
associated images from the test set. Here, we show all ‘misclassified’ examples where
the classifier failed to predict the given label for the MNIST and Fashion-MNIST
datasets. For MNIST, we observe that the majority (60/84) of these images are mis-
labeled: for example, all of the labeled 2s clearly belong to other classes (8, 7, 7, 3, 1,
7, 7, 7, respectively). While MNIST had 84 total misclassifications, Fashion-MNIST
had 802 total misclassifications. We randomly select 10 misclassifications from each
class for analysis (with the exception of the “trousers” class, as there were 3 total
misclassifications for this label). While Fashion-MNIST is more balanced, we again
observe a majority of examples to be mislabeled ground truth (52/93) instead of mis-
classifications.
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Figure 6-26 shows the confusion matrix of the MNIST (left) and Fashion-MNIST
(right) classifiers.
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Figure 6-26: Confusion matrices for MNIST (left) and Fashion-MNIST (right) clas-
sifiers. Note that these matrices include all test set examples, not just those which
evoke high confidence responses from the classifier.
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6.6.11 Bayes-TrEx with Saliency Maps

We demonstrate a simple use case of combining with Bayes-TrEx samples with
downstream interpretability methods. Figure 6-27 (left) shows an image for which the
classifier mistakes it to contain one cube with 93.5% accuracy. Figure 6-27 (middle)
presents its SmoothGrad [143] saliency map and Figure 6-27 (right) overlays it on
top of the image. We can see that the most salient part contributing to the 1-cube
decision is the front red cylinder. Indeed, as we confirm in Figure 6-28, among all
single object removals, removing this object has the biggest effect to the classifier
confidence, decreasing it to 29.0%.

Figure 6-27: Left: the original image, preprocessed for classification by resizing and
normalizing. The classifier is 93.5% confident this scene contains 1 cube, when in
fact it is composed of 3 cylinders and 2 spheres. Middle: the SmoothGrad saliency
map for this input. Right: the saliency map overlaid upon the original image. This
saliency map most strongly highlights the red metal cylinder, indicating that this
cylinder is likely the cause of the misclassification.

(a) p1 Cube = 29.0% (b) p1 Cube = 68.5% (c) p1 Cube = 81.2% (d) p1 Cube = 99.0% (e) p1 Cube = 99.4%

Figure 6-28: Prediction confidence for 1-cube after every single object is removed in
turn. As suggested by the saliency map, the removal of the red metal cylinder most
prominently reduces the classification confidence, from 93.5% to 29.0%.
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Figure 6-29 presents additional case studies with the same setup. Note that Figure 6-
29(e) shows a failure of SmoothGrad.

(a) Original image: p1 Cube = 85.5%. Purple cylinder removed: p1 Cube = 1.9%

(b) Original image: p1 Sphere = 97.9%. Yellow cylinder removed: p1 Sphere = 5.2%

(c) Original image: p1 Cylinder = 85.4%. Red sphere removed: p1 Cylinder = 0.9%

(d) Original image: p1 Cube = 99.7%. Cone removed: p1 Cube = 0.4%

(e) Original image: p1 Sphere = 98.0%. Gray cone removed: p1 Sphere = 0.3%

Figure 6-29: More Bayes-TrEx samples and their saliency maps. Figure 6-29(a)-
6-29(c) are high confidence misclassified examples; Figure 6-29(d)-6-29(e) are novel
class extrapolation examples. In Figure 6-29(e), the saliency map primarily highlights
two objects: the red cone and the blue cylinder. Removing either of these objects
does not result in a change of prediction. Instead, the misclassification of 1 sphere is
due to the marginally-highlighted gray cone.
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Chapter 7

Robot Controller Transparency

7.1 Introduction

The previous chapter introduces the transparency-by-example framework as a way
for model inspection and understanding complementary to procedures based on the
test set. In this chapter, we extend this to study robot controllers, which necessitates,
among other things, a suite of new behavior definitions. Before going into the technical
content, however, we first argue for the importance of comprehensive and wholistic
testing of robot controllers, with a real world tragedy.

In 2018, after a confluence of failures, an autonomous vehicle (AV) struck and killed
a pedestrian for the first time. In the run-up to this fateful event, the responsible
company had reportedly been trying to improve the AV “ride experience" by empha-
sizing non-critical behaviors – such as the smoothness of the ride [22]. This event
reflects the long-standing challenge in robotics: designing an appropriate objective
which considers both safety-critical and non-critical behaviors.

When crafting an objective, it is virtually impossible to proactively account for all
potential controller behaviors, and some priorities may even be in conflict with one
another [125]. In practice, any given robot behaviors may be specified, unspecified,
or even misspecified [20], so extensive testing and evaluation is a critical component
of designing and assessing robot controllers – especially those using black-box models
such as deep neural networks.

This chapter is based on the CoRL 2021 paper “RoCUS: Robot Controller Understanding via
Sampling” by Yilun Zhou, Serena Booth, Nadia Figueroa and Julie Shah [180].
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A common testing procedure focuses on finding extreme and edge cases of controller
failure. For example, a tester might use this procedure to find that the AV swerves
very badly when encountering a farm animal while traveling at 60mph. Finding
such extreme and edge cases is well-studied within both traditional software testing
paradigms [111] and more recent adversarial perturbation testing methods [51].

However, we argue that an equally, if not more, important form of testing should
focus on representative scenarios, which considers the likelihood of encountering these
scenarios. For example, if this AV is going to be deployed exclusively in New York
City, the above example is largely unhelpful: cars rarely travel at 60mph in the city,
and are very unlikely to encounter farm animals. Instead, the tester may prefer to
know that the car swerves – though not as substantively – at lower speeds when a
pedestrian steps toward it. Finding representative scenarios is often overlooked, but
is especially useful for robotics.

Explicit mathematical analysis of robot controllers is implausible given the high di-
mensionality of the configuration space and the potential black-box representation of
a learned controller. With access to a scenario simulator, though, a straightforward
testing approach is to roll out the robotic controller on a distribution of scenarios that
we are interested in (e.g., road conditions under different weather and congestion, with
or without farm animals or pedestrians, etc.), and analyze those rollouts that exhibit
a specified behavior – like excessive swerving. However, with too few scenarios, we
risk missing the condition(s) that triggers the target behavior most saliently. With
too many scenarios, all the most salient rollouts would be close to the global maxi-
mum at the expense of diversity and coverage. For example, if a farm animal causes
the most swerving, followed by a pedestrian and a dangling tree branch, using too
few scenarios may only find the pedestrian and the tree branch while using too many
would result in an exclusive focus on the farm animal. Neither case helps the human
develop a correct mental model of the AV’s behavior.

The goal of finding scenarios that elicit certain robot behaviors while representative
with respect to a distribution should remind the readers of the Bayes-TrEx for-
mulation. Indeed, we extend it and introduce Robot Controller Understanding via
Sampling (RoCUS), a method to enable systematic robot behavior inspection. Ro-
CUS finds scenarios that are both inherently likely and elicit specified behaviors by
formulating the problem as one of Bayesian posterior inference. Analyzing these sce-
narios and the resulting trajectories can help developers better understand the robot
behaviors, and allow them to iterate on algorithm development if undesirable ones
are revealed.
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Figure 7-1: Two use case demos of RoCUS: 2D navigation (left) and 7DoF arm
reaching (right).

We use RoCUS to analyze three controllers on two common robotics tasks (Figure 7-
1). For a 2D navigation problem, we consider imitation learning (IL) [7], dynamical
system (DS) [68], and rapidly-exploring random tree (RRT) [91]. For a 7DoF arm
reaching problem, we consider reinforcement learning (RL) [147], as well as the same
DS and RRT controllers. For each problem and controller, we specify several behav-
iors and visualize representative scenarios and trajectories that elicit those behaviors.
Through this analysis, we uncover insights that would be hard to derive analytically
and thus complement our mathematical understanding of the controllers. Moreover,
we include a case study on how to improve a controller based on new insights from
RoCUS. As such, RoCUS is a step towards the broader goal of building more accu-
rate human mental models and enabling holistic evaluation of robot behaviors.

7.2 Related Work

Our work lies at the intersection of efforts to understand complex model behav-
iors and those to benchmark robot performance. Methods to understand, interpret,
and explain model behaviors are now commonplace in the machine learning com-
munity. Mitchell et al. [106] introduced Model Cards, a model analysis mechanism
which breaks down model performance for data subsets. In natural language pro-
cessing, Ribeiro et al. [130] introduced a checklist for holistic evaluation of model
capabilities and test case generation. In robotics, Fan et al. [43] introduced a verifica-
tion framework for assessing machine behavior by sampling parameter spaces to find
temporal logic-satisfying behaviors. Other efforts aim to summarize robot policies,
trading off factors like brevity, diversity and completeness [61, 86]. All of these works
have a shared underlying theme: treating the black box as immutable and performing
downstream analyses of machine behavior [124]. RoCUS builds upon Bayes-TrEx
and searches for instances which exhibit target behaviors to inform accurate human
mental models.
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𝑡 𝜏 𝑏 �̂�

Figure 7-2: The graphical model for the inference problem of finding scenarios 𝑡 and
trajectories 𝜏 which exhibit specific behaviors 𝑏. The dashed box indicates the relaxed
formulation (Eq. 7.2).

While the need for benchmarking robot performance is often expressed [76, 103, 110],
these efforts usually operate on distributions of trajectories or randomly selected tra-
jectories, and the accompanying metrics are typically task-completion based without
consideration of implicit performance factors. Anderson et al. [6] put forth a rec-
ommendation of using success weighted by path length for navigation tasks – a task-
completion metric. Cohen et al. [30] and Moll et al. [107] introduced suites of metrics
for comparing motion planning approaches, and Lagriffoul et al. [87] presented a set of
task and motion planning scenarios and metrics. Again, all of these proposed metrics
are based solely on task completion. Lemme et al. [95] proposed a set of performance
measures for reaching tasks, which are either task-completion based or require a costly
human motion ground truth. Our contribution is distinct in two ways. First, we pro-
pose to sample specific trajectories which communicate controller behaviors instead
of reporting metrics averaged over distributions of trajectories. Second, we introduce
metrics which draw on these prior works while also including essential alternative and
typically emergent quality factors, like motion jerkiness and legibility [41].

7.3 Methodology

At a high level, RoCUS helps users understand robotic controllers via representative
scenarios that exhibit various specified behaviors. It solves this by directly incor-
porating the distribution of scenarios into a Bayesian inference framework as shown
in Figure 7-2. A robotic problem is represented by a distribution 𝜋(𝑡) of individual
scenarios 𝑡. For example, a navigation problem may have 𝜋(𝑡) representing the dis-
tribution over target locations and obstacle configurations. Given a specific scenario
𝑡, the controller under study induces a distribution 𝑝(𝜏 |𝑡) of possible trajectories 𝜏 .
If both the controller and the transition dynamics are deterministic, 𝑝(𝜏 |𝑡) reduces
to a 𝛿-function at the induced trajectory 𝜏 . Stochasticity in either the controller
(e.g., RRT) or the dynamics (e.g., uncertain outcome from an action) can result in
𝜏 being random. Finally, a behavior function 𝑏(𝜏, 𝑡) computes the behavior value of
the trajectory – for example, the motion jerkiness. Some behaviors only depend on
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the trajectory and not the scenario, but we use 𝑏(𝜏, 𝑡) for consistency. Section 7.4
presents a list of behaviors.

The discussion on behavior in Section 7.1 is informal and implicitly combines two re-
lated but different concepts. The first concept is the behavior function 𝑏(𝜏, 𝑡) discussed
above. The second is the specified target: for the swerving example, we are particu-
larly interested in maximal behavior values. Thus, the target value can be thought of
as +∞. This inference problem uses the maximal mode of RoCUS. In other cases,
we are also interested in scenarios and trajectories whose behaviors matches a target.
For example, we want to find road conditions that lead to a daily commute time of an
hour, where the behavior is the travel time. This inference problem uses the matching
mode. Since matching mode is conceptually simpler, we present it first, followed by
maximal mode. The sampling procedure is the same for both modes and presented
last in Algorithm 2.

7.3.1 Matching Mode

The exact objective is to find scenarios and trajectories that exhibit user-specified
behaviors 𝑏*:

𝑡, 𝜏 ∼ 𝑝(𝑡, 𝜏 |𝑏 = 𝑏*) ∝ 𝑝(𝑏 = 𝑏*|𝑡, 𝜏)𝜋(𝜏 |𝑡)𝜋(𝑡). (7.1)

In most cases this posterior does not admit direct sampling, and an envelope distri-
bution is not available for rejection sampling. Markov-Chain Monte-Carlo (MCMC)
sampling does not work either: since the posterior is only non-zero on a very small
or even measure-zero set, a Metropolis-Hastings (MH) sampler [58] can get stuck in
the zero-density region. Similar to the Bayes-TrEx formulation, we relax it using
a normal distribution formulation as shown in Figure 7-2:

̂︀𝑏|𝑏 ∼ 𝒩 (𝑏, 𝜎2) 𝑡, 𝜏 ∼ 𝑝(𝑡, 𝜏 |̂︀𝑏 = 𝑏*) ∝ 𝑝(̂︀𝑏 = 𝑏*|𝑡, 𝜏)𝑝(𝜏 |𝑡)𝜋(𝑡). (7.2)

This relaxed posterior is non-zero everywhere 𝜋(𝑡) is non-zero and provides useful
guidance to an MH sampler. While 𝜎 is a hyper-parameter in Bayes-TrEx, we
instead choose 𝜎 such that∫︁ 𝑏*+

√
3𝜎

𝑏*−
√
3𝜎

𝑝(𝑏) d𝑏 = 𝛼, with 𝑝(𝑏) =

∫︁
𝑡

∫︁
𝜏

𝑝(𝜏 |𝑡)𝜋(𝑡)1𝑏(𝜏,𝑡)=𝑏 d𝜏 d𝑡 (7.3)

being the marginal distribution of 𝑏(𝜏, 𝑡), which can be estimated by trajectory roll-
outs.
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This formulation has two desirable properties. First, it is scale-invariant with respect
to 𝑏(𝜏, 𝑡), e.g., measured under different units like meters vs. centimeters. Consider
the same behavior under two different units 𝑏1 and 𝑏2 with 𝑏1 = 𝑐 · 𝑏2. For example, 𝑏1
can be the trajectory length in centimeters and 𝑏2 is the same quantity but in meters,
and 𝑐 = 100. Thus, 𝑝(𝑐 · 𝑏1) = 𝑝(𝑏2) and 𝑏*1 = 𝑐 · 𝑏*2. To maintain the same 𝛼 level in
Eq. 7.3, we need to have 𝜎1 = 𝑐 · 𝜎2. This implies that

𝑝(𝑡, 𝜏 |�̂�1 = 𝑏*1) =
𝒩 (𝑏*1; 𝑏(𝜏, 𝑡), 𝜎

2
1)𝑝(𝜏 |𝑡)𝜋(𝑡)

𝑝(�̂�1 = 𝑏*1)
(7.4)

=
𝒩 (𝑏*2; 𝑏(𝜏, 𝑡), 𝜎

2
2)𝑝(𝜏 |𝑒)𝜋(𝑡)

𝑝(�̂�2 = 𝑏*2)
= 𝑝(𝑡|�̂�2 = 𝑏*2) (7.5)

because 𝒩 (𝑏*1; 𝑏(𝜏, 𝑡), 𝜎
2
1) = 𝒩 (𝑏*2; 𝑏(𝜏, 𝑡), 𝜎

2
2) due to the same scaling of 𝑏1 ∼ 𝑏2 and

𝜎1 ∼ 𝜎2, and 𝑝(�̂�1 = 𝑏*1) = 𝑝(�̂�2 = 𝑏*2) as they are the same event. We conclude that
the posterior distribution is scale-invariant with respect to 𝑏(𝜏, 𝑡).

Second, the hyper-parameter 𝛼 ∈ [0, 1] has the intuitive interpretation of the ap-
proximate “volume” of posterior samples 𝑡, 𝜏 | ̂︀𝑏 = 𝑏* under the marginal 𝑝(𝑡, 𝜏) =

𝑝(𝜏 |𝑡)𝜋(𝑡), a notion of their representativeness. Consider a uniform approximation to
𝒩 (𝑏*, 𝜎2). To match the mean 𝑏* and standard deviation 𝜎, 𝒰(𝑏* −

√
3𝜎, 𝑏* +

√
3𝜎)

is needed. If we use this uniform distribution in Eq. 7.2 in lieu of the normal dis-
tribution, the posterior can be instantiated by sampling from the prior and rejecting
scenarios for which the trajectory behavior 𝑏(𝜏, 𝑡) falls outside of this bound. Thus,
Eq. 7.3 specifies that the “volume” of (𝛼 · 100)% under 𝑝(𝑡, 𝜏) is maintained.

7.3.2 Maximal Mode

In this mode, RoCUS finds trajectories that lead to maximal behavior values: 𝑏* →
±∞. It can also be used for finding minimal behavior values by negating the behavior.
The posterior formulation is:

𝑏0 =
𝑏− E[𝑏]√︀

V[𝑏]
, 𝛽 =

1

1 + 𝑒−𝑏0
, ̂︀𝛽 ∼ 𝒩 (︀

𝛽, 𝜎2
)︀
, 𝑡, 𝜏 ∼ 𝑝(𝑡, 𝜏 |̂︀𝛽 = 1), (7.6)

where E[𝑏] and V[𝑏] are the mean and variance of the marginal 𝑝(𝑏). 𝜎 is chosen such
that ∫︁ 1

1−
√
3𝜎

𝑝(𝛽) d𝛽 = 𝛼, (7.7)
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where 𝑝(𝛽) is the marginal distribution similar to Eq. 7.3. If 𝑝(𝑏) is normal, 𝑝(𝛽)

is logit-normal. This formulation is again scale-invariant and has the same “volume”
interpretation for 𝛼. The former stems from the standardization on 𝑏 performed in
Eq. 7.6. The latter uses the same uniform approximation but the bound is one-sided
since 𝛽 ∈ (0, 1) by nature of the sigmoid transformation.

7.3.3 Posterior Sampling

The posterior sampling mechanism depends on the stochasticity of the controller and
dynamics, and we discuss three cases.

Deterministic Controller & Dynamics: When both the controller and the dy-
namics are deterministic, so is 𝜏 |𝑡, denoted as 𝜏(𝑡). Eq. 7.2 reduces to 𝑡 ∼ 𝑝(𝑡|̂︀𝑏 =

𝑏*) ∝ 𝑝(̂︀𝑏 = 𝑏*|𝑡, 𝜏(𝑡))𝜋(𝑡), and similarly for Eq. 7.6. Algorithm 2 presents the MH
sampling procedure. First, 𝜎 is computed from 𝛼 (Line 2). Then we start with an
initial scenario 𝑡 (Line 3). For each of the 𝑁 iterations, we propose a new scenario
𝑡new according to a transition kernel and compute the forward and reverse transition
probabilities 𝑝for, 𝑝rev (Line 5). We evaluate the posteriors under 𝑡 and 𝑡new (Line 6
and 7) and calculate the acceptance probability using the MH detailed balance prin-
ciple (Line 8). Finally, we accept or reject accordingly (Line 9 – 11). Note that if the
proposal is rejected, the current 𝑡 is left unchanged and appended to the samples. We

Algorithm 2: MH Sampling Procedure
Input: “Posterior volume” 𝛼, number of samples 𝑁 , optional burn-in 𝑁𝐵

and thinning period 𝑁𝑇 .
1 samples ← [ ];
2 Get 𝜎 from 𝛼 by Eq. 7.3 (matching) or 7.7 (maximal);
3 Randomly initialize 𝑡;
4 for 𝑖 = 1, ..., 𝑁 do
5 𝑡new, 𝑝for, 𝑝rev = propose(𝑡)
6 Get 𝑝 from 𝑡 by Eq. 7.2 (match) or Eq. 7.6 (max)
7 Get 𝑝new from 𝑡new by Eq. 7.2 or Eq. 7.6;
8 𝑎← (𝑝new · 𝑝rev)/(𝑝 · 𝑝for);
9 Sample 𝑢 ∼ 𝒰 [0, 1];

10 if 𝑢 < 𝑎 then
11 𝑡← 𝑡new;
12 Append 𝑡 to samples;
13 Optionally, discard the first 𝑁𝐵 burn-in samples and thin the samples by

only keeping every 𝑁𝑇 samples;
14 return samples
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𝑢

Figure 7-3: The same graphical model as in Figure 7-2, but with the addition of
stochasticity 𝑢 in the controller such that 𝜏 |𝑡, 𝑢 is now deterministic.

can discard the first 𝑁𝐵 samples as burn-in, and/or thin the samples by a factor of
𝑁𝑇 to reduce auto-correlation.

Stochastic Controller: When the controller and 𝑝(𝜏 |𝑡) are stochastic, the controller
can usually be implemented by sampling a random variable 𝑢 (independent from 𝑡),
and then producing the action based on the realization of 𝑢, as shown in Figure 7-3.
For instance, a Normal stochastic policy 𝜋(𝑠) ∼ 𝒩 (𝜇(𝑠), 𝜎(𝑠)2) can be implemented
by first sampling 𝑢 ∼ 𝒩 (0, 1) and then computing 𝜋(𝑠) = 𝜇(𝑠) + 𝑢 · 𝜎(𝑠). In this
case, we sample in the combined (𝑡, 𝜏)-space, with Eq. 7.2 being 𝑝(𝑡, 𝜏 |̂︀𝑏 = 𝑏*) ∝ 𝑝(̂︀𝑏 =
𝑏*|𝑡, 𝜏(𝑒, 𝑢))𝑝(𝑢)𝜋(𝑡), where we overload 𝜏(𝑡, 𝑢) to refer to the deterministic trajectory
given the scenario 𝑡 and controller randomness 𝑢. It is crucial that for any 𝑢, we can
evaluate 𝑝(𝑢). Concretely, modifying Algorithm 2, 𝑢new is proposed alongside with
𝑡new (Line 5), the detailed balancing factor (Line 8) is multiplied by 𝑝𝑢,rev/𝑝𝑢,for, and
𝑡new, 𝑢new are accepted or rejected together (Line 10 – 12).

Stochastic Dynamics: Using the same logic as the case of stochastic controller,
RoCUS can also accommodate stochasticity in transition dynamics (e.g., object po-
sition uncertainty after it is pushed), as long as such stochasticity can be captured in a
random variable 𝑣 and 𝑝(𝑣|𝑡) can be evaluated. This is typically possible in simulation,
and the modification to Algorithm 2 is similar to the case of stochastic controllers.
We leave real world execution to future work, but at a high level, we can

1. treat a sampled trajectory as the deterministic one;

2. restart multiple times to estimate E𝜏 [𝑏(𝜏, 𝑡)]; or

3. use likelihood-free MCMC methods [23].

7.3.4 The Bayesian Posterior Sampling Interpretation

RoCUS uses Bayesian sampling concepts of prior, likelihood, and posterior quite
liberally. Specifically, the scenario distribution is defined as the prior, and thus the
notion of a scenario being likely in the deployment context refers to high probability

154



under the prior. Likelihood refers to the behavior saliency: how much the exhibited
behavior matches the behavior specification. The act of posterior sampling then finds
tasks that strike a balance between these two objectives.

The choice of explicitly modeling the scenario distribution is intentional, as it is not
unlikely that the deployment environment will be different than the development
environment. Such a domain mismatch may cause catastrophic failures, especially
for learned controllers whose extrapolation behaviors are typically undefined. With
a suitable scenario distribution, RoCUS allows more failures to surface during this
testing procedure.

7.4 Behavior Taxonomy

Robot behaviors broadly belong to one of two classes: intentional and emergent.
Intentional behaviors are those that the controller explicitly optimize with objective
functions. For example, the controller for a reaching task likely optimizes to move the
end-effector to the target, by setting the target as an attractor in DS, using a target-
reaching objective configuration in RRT, or rewarding proximity in RL. Thus, the
final distance between the end-effector and the target is an intentional behavior for
all three controllers. By contrast, emergent behaviors are not explicitly specified in
the objective. For the same reaching problem, an RL policy with reward based solely
on distance may exhibit smooth trajectories for some target locations and jerky ones
for others. Such behaviors may emerge due to robot kinematic structure, training
stochasticity, or model inductive bias.

For trajectory 𝜏 , many behavior metrics 𝑏(𝜏, 𝑡) can be expressed as a line integral∫︀
𝜏
𝑉 (x)d𝑠 of a scalar field 𝑉 (x) along 𝜏 or its length-normalized version 1

||𝜏 ||

∫︀
𝜏
𝑉 (x)d𝑠,

where d𝑠 is the infinitesimal segment on 𝜏 at x and ||𝜏 || is the trajectory length. x and
𝜏 can be in either joint space or task space. We introduce six behaviors: length, time
derivatives (velocity, acceleration and jerk), straight-line deviation, obstacle clearance,
near-obstacle velocity and motion legibility, summarized in Table 7.1.

Trajectory length simply measures how long the trajectory is. In most of the
behaviors below, the normalizing factor is also length to decorrelate the behavior
value from it.

Average velocity, acceleration and jerk are useful for general understanding
about how fast and abruptly the robot moves, an important factor to its safety.

Straight-line deviation measures how much the robot trajectory deviates from
the straight-line path, in either the task space or the state space. A specific scenario
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Name Definition Name Definition

Trajectory Length 𝑏 =

∫︁
𝜏

1 d𝑠 Straight-Line Deviation 𝑏 =
1

||𝜏 ||

∫︁
𝜏

||x− projx𝑓−x𝑖
x|| d𝑠

Average Velocity 𝑏 =
1

||𝜏 ||

∫︁
𝜏

||ẋ|| d𝑠 Obstacle Clearance 𝑏 =
1

||𝜏 ||

∫︁
𝜏

min
x𝑜∈𝒪
||x− x𝑜|| d𝑠

Average Acceleration 𝑏 =
1

||𝜏 ||

∫︁
𝜏

||ẍ|| d𝑠 Near-Obstacle Velocity 𝑏 =

∫︀
𝜏
||ẋ||/minx𝑜∈𝒪 ||x− x𝑜|| d𝑠∫︀
𝜏
1/minx𝑜∈𝒪 ||x− x𝑜|| d𝑠

Average Jerk 𝑏 =
1

||𝜏 ||

∫︁
𝜏

|| ...x || d𝑠 Motion Legibility 𝑏 =
1

||𝜏 ||

∫︁
𝜏

𝑝(𝑔|x) d𝑠

Table 7.1: Behavior definitions.

instance in which the straight-line path is feasible (e.g., with no obstacles) is typically
considered easy. Thus, we can find scenarios of varying difficulty level on the spectrum
of deviation values. In the definition, x𝑖 is the initial state, x𝑓 is the final state, and
proj is the projection operator.

Obstacle clearance measures the average distance to the closest obstacle. Finding
situations in which the robot moves very close to obstacles is crucial to understanding
the collision risk level. In the definition, 𝒪 represents the obstacle space.

Near-obstacle velocity calculates how fast the robot moves around obstacles. We
define it as the average velocity on the trajectory weighted by the inverse distance
to the closest obstacle. Other weighting method can be used, as long as it is non-
negative and monotonically decreasing with distance. This behavior is correlated
with the damage of a potential collision, as high-speed collisions are usually far more
dangerous and costly. Since we want the value to represent the average velocity, we
normalize by the integral of weights along the trajectory.

Motion legibility measures how clear the trajectory informs the goal. A generic
definition is 𝑝(𝑔|x), or the conditional probability of the goal 𝑔 given at the current
robot state x, but better, application-specific ones may exist.

7.5 Experiments

In this section, we demonstrate how RoCUS can find “hidden” properties of various
controllers for two common tasks, navigation and reaching. We also uncover a subop-
timal controller design due to bad hyper-parameter choices, which is improved based
on RoCUS insights.

Each sampling run collected 10,000 samples, with the first 5,000 discarded as burn-
in. On a consumer-grade computer with a single GeForce GTX 1080 GPU card
(for neural network-based controllers), the sampling generally takes around 1 to 3
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hours. Since RoCUS is designed to be an offline analysis tool as opposed to be
used for real-time sample generation, several hours of runtime would be acceptable
in most cases. Furthermore, MCMC sampling is embarrassingly parallel by simply
using multiple chains concurrently, with the only overhead cost being the discarded
burn-in samples.

7.5.1 Controller Algorithms

We consider four classes of robot controllers. The imitation learning (IL) controller
uses expert demonstrations to learn a neural network policy which maps observations
to deterministic actions. The reinforcement learning (RL) controller implements
proximal policy gradient (PPO) [137]. While a mean and a variance is used to param-
eterize a PPO policy during training, the policy deterministically outputs the mean
action during evaluation.

The dynamical system (DS) controller modulates the linear controller u(x) = x*−
x, for the task-space target x*, into u𝑀(x) = 𝑀 · u(x) using the modulation matrix
𝑀 derived from obstacle configuration, as proposed by Huber et al. [68]. We give a
self-contained review in Appendix 7.7.1.

The rapidly-exploring random tree (RRT) controller finds a configuration-space
trajectory via RRT and then controls the robot through descretized segments. There
are many RRT variants with subtle differences. For clarity, Algorithm 3 presents the
version that we use.

Algorithm 3: RRT Algorithm
Input: Start configuration 𝑠0, target configuration 𝑠*.

1 𝒯 ← tree(root = 𝑠0);
2 success ← attempt-grow(𝒯 , from = 𝑠0, to = 𝑠*);
3 while not success do
4 𝑠 ← sample-configuration( );
5 𝑠𝑛 ← nearest-neighbor(𝒯 , 𝑠);
6 success ← attempt-grow(𝒯 , from = 𝑠𝑛, to = 𝑠);
7 if success then
8 success ← attempt-grow(𝒯 , from = 𝑠, to = 𝑠*);
9 return path(𝒯 , from = 𝑠0, to = 𝑠*)

Notably, RRT is stochastic (cf. Figure 7-3), but the entire randomness is captured
by the sequence of C-space samples used to grow the tree, including failed ones. We
call this a growth 𝑔 = [𝑠1, 𝑠2, 𝑠3, ...]. The probabilistic completeness property of RRT
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generally assures that the algorithm will terminate in finite time with probability
1 if a path to the target exists [91]. Thus, hypothetically, given an infinitely long
tape containing every entry of 𝑔, we can compute a deterministic trajectory 𝜏 =

RRT(𝑠0, 𝑠
*, 𝑔) with a finite number of nodes with probability 1.

To enable MH inference, we take inspiration from Bayesian nonparametrics: we in-
stantiate 𝑔 on an as-needed basis. We start with an empty vector of 𝑔 = [ ]. When
calculating RRT(𝑠0, 𝑠

*, 𝑔), if a new point beyond existing entries of 𝑔 needs to be
sampled, we append it to 𝑔. During MH inference, we use a transition kernel that
operates element-wise on instantiated entries of 𝑔 (i.e., independently perturbing each
entry of 𝑔). If the transition kernel does not depend on the current 𝑔 (e.g., drawing
uniformly from the C-space), past instantiated entries do not even need to be kept.

Note that RRT trajectories are often smoothed post hoc. Since our main focus is to
evaluate and identify problems for an existing one, we use the original formulation.
Moreover, it is easy to use RoCUS to evaluate model updates (e.g., original vs
smoothed RRT) as discussed in Section 7.6.

For MCMC sampling, we used a truncated Gaussian transition kernel for all exper-
iments. For the RBF-defined 2D environment, we initialize 15 obstacle points with
coordinates sampled uniformly in [−0.7, 0.7]. The transition kernel operates indepen-
dently on each obstacle coordinate: given the current value of 𝑥, the kernel samples
a proposal from 𝒩 (𝜇 = 𝑥, 𝜎2 = 0.12) truncated to [−0.7, 0.7] (and also appropriately
scaled). For the arm reaching task, the target is sampled uniformly from two disjoint
boxes, with the left box at [−0.5,−0.05]× [−0.3, 0.2]× [0.65, 1.0] and the right box at
[0.05, 0.5]×[−0.3, 0.2]×[0.65, 1.0]. Again, we use the same transition kernel with 𝜎𝑥 =

0.1, 𝜎𝑦 = 0.03, 𝜎𝑧 = 0.035 in three directions. Again, the distribution is truncated to
the valid target region (𝑥 ∈ [−0.5,−0.05] ∪ [0.05, 0.5], 𝑦 ∈ [−0.3, 0.2], 𝑧 ∈ [0.65, 1.0]).
Hence, the transition kernel implicitly allows for the jump across two box regions.

In addition, the stochastic RRT controller also requires a transition kernel. A new
segment to the growth (i.e., configuration) is uniformly sampled between the lower-
and upper-limit (i.e., [𝑥𝐿, 𝑥𝑈 ]). For each configuration, the same Gaussian kernel
truncated to [𝑥𝐿, 𝑥𝑈 ], and 𝜎 = 0.1(𝑥𝑈 − 𝑥𝐿) is used.

7.5.2 2D Navigation Task Experiments

Setup In a rectangular arena with irregularly shaped obstacles, a point mass robot
needs to move from the lower left to the upper right corner (Figure 7-1 left). A
random sample of environments is visualized in Figure 7-4. Appendix 7.7.2 details
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the obstacle generation and robot simulation procedures.

We consider three controllers for this environment: an RRT planner, a deep learning
IL policy, and a DS (Figure 7-5). The RRT planner implements Algorithm 3 and
discretizes the path to small segments as control signals at each time step. The IL
controller uses smoothed RRT trajectories as expert demonstrations, and learns to
predict heading angle from its current position and lidar readings. The DS controller
finds an interior reference point for each obstacle, and converts each obstacle in the
environment to be star-shaped. Γ-functions are then defined for these obstacles and
used to compute the modulation matrix 𝑀 . Appendix 7.7.3 contains additional
implementation details.

Figure 7-4: An assortment of randomly generated RBF 2D environments, providing
a sense of the diversity generated with this formulation. The green dots are the
environment starting points and the red stars are navigation targets.

RRT

Tree
Path

Smoothing and Lidar

Original
Smoothed

DS Modulation

Figure 7-5: RRT, IL and DS controllers on 2D navigation domain. Left: the RRT
controller tree. Middle: smoothed RRT trajectory and lidar sensor (orange lines) for
IL controller training. Right: the modulation by the DS controller.
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Straight-Line Deviation In most cases, the robot cannot navigate directly to the
target in a straight line. Thus, the collision-avoidance behavior is a crucial aspect for
navigation robots. To understand it, we sample obstacles that lead to trajectories
minimally deviating from the straight line path. Since the deviation is always non-
negative, we use the matching mode in Eq. 7.2 with target 𝑏* = 0.

In Figure 7-6, the top row plots posterior trajectories in orange, with prior trajectories
in blue. The bottom row plots the obstacle distributions compared to the prior, with
red regions being more likely to be occupied by obstacles and blue ones less likely to
be obstructed.

Dynamical System Rapidly-Exploring
Random Tree

Imitation Learning
Dynamical System Rapidly-Exploring

Random Tree
Imitation Learning

Figure 7-6: Top: posterior trajectories in orange vs. prior in blue for minimal straight-
line deviation behavior for three controllers. Bottom: posterior obstacle distribution
relative to the prior. Higher obstacle density regions are painted in red and lower
ones in blue.

For DS and RRT, the posterior trajectories and obstacle configurations are mostly
symmetric with respect to the straight-line connection, as expected since both meth-
ods are formulated symmetrically with respect to the 𝑥- and 𝑦-coordinates. The
obstacle distribution under RRT is also expected, since it seeks straight-line connec-
tions whenever possible and thus favor a “diagonal corridor” with obstacles on either
side. For DS, however, obstacles are slightly more likely to exist at the two ends
of the above-mentioned corridor. This behavior is an artifact of the DS tail effect,
which drags the robot around the obstacle (details in Appendix 7.7.1). By taking
advantage of anchor-like obstacles at the ends of the corridor, the modulation can
reliably minimize the straight-line deviation.

By comparison, the IL controller saliently exhibits trajectory asymmetry: it mostly
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takes paths on the left. It is possible that the asymmetry is due to “unlucky” samples
by the MH sampler, but many independent restarts all confirm its presence, indicat-
ing that the asymmetry is inherent in the learned model. Since the neural network
architecture is symmetric, we conclude that the stochasticity in the dataset genera-
tion and training procedure (e.g., initialization) leads to such imbalanced behaviors.
Furthermore, the obstacle map suggests that obstacles are distributed very close to
the robot path. Why does the robot seem to drive into obstacles? The answer lies
in dataset generation: the smoothing procedure (Figure 7-5 middle) results in most
demonstrated paths navigating tightly around obstacles, and it is thus expected that
the learned IL controller displays the same behavior.

DS Min Legibility DS Min Clear. DS Max Clear.

Figure 7-7: Left: trajectories and obstacle configurations from sampling minimal DS
legibility. Right: obstacle configurations for minimizing and maximizing DS obstacle
clearance. These examples show how obstacle positions affect the legibility and clear-
ance behaviors.

Legibility We define the instantaneous legibility as the cosine similarity between
the current robot direction and the direction to target x*, 𝑉 (x) = ẋ · (x*− x)/(||ẋ|| ·
||x* − x||), with the intuition that a particular run may be confusing to users if the
robot does not often align to the target. Though this quantity is bounded by [−1, 1], a
general legibility definition may not be. Thus, we use the maximal mode of RoCUS
to find DS trajectories and obstacle configurations that achieve minimal legibility,
by negating 𝑉 (x) first. The left two panels of Figure 7-7 present the samples. As
expected, most trajectories take large detours due to obstacles in the center.

Obstacle Clearance We take 𝑉 (x) = minx𝑜∈𝒪 ||x − x𝑜||. For the DS, we sample
two posteriors to maximize and minimize this behavior. As shown in the right two
panels of Figure 7-7, when minimizing obstacle clearance, we see clusters of obstacles
in close proximity to the starting and target positions, such that the robot is forced to
navigate around them. When maximizing obstacle clearance, we instead see central
clusters of obstacles, such that the robot can avoid them by bearing hard left or right.
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Takeaways RoCUS reveals two unexpected phenomena. First, IL trajectories are
highly asymmetric toward the left of the obstacle due to dataset and/or training im-
balance. Second, both DS and IL models exhibit certain “obstacle-seeking” behaviors,
the former due to the “tail-effect” and the latter due the dataset generation process. In
both cases, such behavior may be undesirable in deployment due to possibly imprecise
actuation, and the controller design may need to be modified.

7.5.3 7DoF Arm Reaching Task Experiments

Setup A 7DoF Franka Panda arm is mounted on the side of a table with a T-
shaped divider (Figure 7-1 right). Starting from the same initial configuration on top
of the table, it needs to reach a random location on either side under the divider. We
simulate this task in PyBullet [32]. We consider three controllers: an RRT planner,
a deep RL PPO agent, and a DS formulation.

RRT again implements Algorithm 3, but uses inverse kinematics (IK) to first find
the joint configuration corresponding to the target location. The RL controller is a
multi-layer perceptron (MLP) network trained using the PPO algorithm. The DS
model outputs the end-effector trajectory in the task space, which is converted to
joint space via IK, with SVM-learned obstacle definitions. Appendix 7.7.4 contains
additional implementation details for each method. Overall, RRT and RL are quite
successful in reaching the target while the DS is not due to the bulky robot structure,
close proximity to the divider, and the task-space only modulation.

RRT Min EE Movement RL Min EE Movement Original DS Final Distance Improved DS Final Distance

RRT Min EE Movement RL Min EE Movement Original DS Final Distance Improved DS Final Distance

RRT Min EE Movement RL Min EE Movement Original DS Final Distance Improved DS Final Distance

Figure 7-8: Left: Minimal end-effector movement samples for RRT and RL. Right:
Posterior samples for minimal distance from end-effector to target for the original and
improved DS controllers. Top: posterior targets locations, with tabletop + divider
in green and target region in orange. Bottom: posterior trajectories in red, prior
trajectories in blue. Robot is mounted on the near long edge.
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End-Effector Movement We find configurations that minimize the total travel
distance of the end-effector for RRT and RL (DS omitted due to high failure rate).
Figure 7-8 (left two) shows the posterior target locations and trajectories. Notably,
unlike RL, RRT trajectories are highly asymmetric, since there are straight-line con-
nections in the configuration space from the initial pose to some target regions on the
left, while every right-side goal requires at least an intermediate node.

Legibility We define legibility of reaching to the target on one side of the vertical
divider as the average negative distance that the end effector moves in the other
direction, 𝑉 (x) = −max(x̃1, 0), where x̃1 = x1 if target is on the left, or x̃1 = −x1

otherwise, and x1 is the 𝑥-coordinate of the robot end effector with right in the
positive direction. We find target locations that are minimally legible and apply the
maximal inference mode on the maximum distance measure.

Modified DS RRT Min Legibility
Modified DS RRT Min Legibility

Figure 7-9: Posterior samples showing minimal legibility behavior for RRT.

We did not find any illegible motions from RL controllers for 2,000 targets, which is
mostly expected since the RL reward is distance to the target. For RRT, however,
since we do not use an optimal formulation [e.g. 60, 79] or perform post-hoc smoothing,
the controller is expected to frequently exhibit low legibility. Figure 7-9 plots the
posterior target locations and trajectories. The target locations leading to illegible
motions are spread out mostly uniformly on the right, but concentrated in far-back
area on the left, consistent with our findings on the asymmetry of configuration space.
The trajectory plot confirms the illegibility.

DS Improvement Our initial DS implementation frequently fails to reach the tar-
get. This is understandable, as the DS convergence guarantee [68] is only valid in task
space, in which the modulation is defined. When the full-arm motion is solved via
IK, it is possible that some body parts may collide and get stuck because of the table
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divider. To understand the DS behaviors, we use RoCUS to sample target locations
that result in minimal final distance from the end-effector to the target (i.e., most
successful executions, Figure 7-8 center-right). Similar to the RRT case, the samples
show strong lateral asymmetry, with all posterior target locations on the left, due to
the same cause of asymmetric kinematic structure. The result points to a clear path
to improve the DS controller such that it can succeed with right-side targets: increase
the collision clearance of the divider so that the end-effector navigates farther away
from the divider, thus also bringing the whole arm to be farther away. As detailed
in Appendix 7.7.5, this modification greatly improves the controller performance as
confirmed by the new symmetry in Figure 7-8 (rightmost). In addition, since the issue
with DS controller mainly lies in obstacle avoidance in joint-space or on the body of
the robot, additional techniques [82, 105, 126, 154] could be used and we leave them
to future directions.

Takeaway The set of studies reveal an important implication of the robot’s kine-
matic structure: the left side is much less “congested” with obstacles than the right
side in the configuration space. While the RL controller is able to learn efficient poli-
cies for both sides, the design of certain controllers may need to explicitly consider
such factors.

7.5.4 Quantitative Summary

We studied other additional behaviors on both tasks, and Table 7.2 summarizes prior
vs. posterior mean behavior values and shows that RoCUS consistently finds samples
salient in the target behavior.

Domain Behavior Target Prior (DS) Post. (DS) Prior (IL/RL) Post. (IL/RL) Prior (RRT) Post. (RRT)

2D Nav

Avg. Jerk 0 1.84e-3 1.46e-3 6.95e-4 3.19e-4 4.24e-4 2.79e-4
Straight 0 0.256 0.084 0.378 0.301 0.470 0.162
Legibility min 0.819 0.650 0.877 0.784 0.798 0.669
Obstacle 0 0.309 0.229 0.262 0.218 0.312 0.241
Obstacle max 0.309 0.611 0.262 0.387 0.312 0.442

Arm
Straight 0 0.980 0.913 0.858 0.762 1.223 0.897
EE Dist 0 0.934 0.623 0.958 0.691 3.741 1.192

Table 7.2: Quantitative results on tasks for two domains.

7.5.5 MCMC Sampling Evaluation

After confirming that RoCUS can indeed uncover significant and actionable controller
insights, we evaluate the sampling procedure itself, using behaviors described above
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as examples.
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Figure 7-10: Sampled behavior values for three MCMC chains. From left to right,
the three panels show DS min straight-line deviation on 2D navigation, RRT min
straight-line deviation on 2D navigation and RL min end-effector movement on 7DoF
arm reaching. The visualization confirms that 10,000 iterations with 5,000 burn-ins
are more than sufficient to find representative samples.

Mixing Property A potential downside of MCMC sampler is the slow mixing
time, which causes the chain to take a long time to converge from initialization and
causes consecutive samples to be highly correlated. Does this phenomenon happen for
our sampling? Figure 7-10 plots the behavior along the MCMC iterations for various
sampling runs, showing that the chains mix well quite fast. Thus, a modest amount of
samples, such as several thousand, is typically sufficient to model the target posterior
distribution well.

Baseline: Top-𝑘 Selection To the best of our knowledge, RoCUS is the first
work that applies the transparency-by-example (TrEx) formulation to robotic tasks,
and we are not aware of existing methods for the same purpose. Notably, adversar-
ial perturbation algorithms [51] are not feasible, since stepping in simulator (or real
world) is not typically differentiable. Section 7.1 discusses a straightforward alterna-
tive that runs the controller on 𝑁 different scenarios and pick the top-𝑘 with respect
to the target behavior. We demonstrate its shortcomings on the minimal straight-line
deviation behavior for the 2D navigation DS controller (RoCUS samples shown in
Figure 7-6 left).

Figure 7-11 (left) shows the trajectories of different values of 𝑘 for the same fixed 𝑁 ,
and vice versa. While a bigger 𝑁/𝑘 ratio leads to more salient behaviors in the top-𝑘
samples, these examples become more concentrated around the global maximum and
less diverse, making this approach especially myopic. Further, it is not easy to find
the optimal 𝑁 to trade off between diversity and saliency of the top-𝑘 samples. By
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contrast, RoCUS offers the intuitive 𝛼 hyper-parameter. Figure 7-11 (middle) shows
that a smaller 𝑁 fails to highlight the “corridor” pattern while a larger 𝑁 makes it
completely open and misses the “tail-effect anchors” at the two ends.

In addition, the hard cut-off at the 𝑘-th salient behavior threshold has two undesirable
implications: first, every trajectory more salient than the threshold is kept but is given
equal importance; second, a trajectory even slightly under the threshold is strictly
discarded. By comparison, RoCUS gives more importance to more salient samples
in a progressive manner, as shown in Figure 7-11 right.

Finally, top-𝑘 selection is very computationally inefficient. It discards all of the
unselected 𝑁 − 𝑘 samples, while RoCUS is much more efficient in that all samples
after the burn-in up to the thinning factor can be kept since the posterior concentrated
on the salient behavior is directly sampled.

Different k, same N=10000
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Figure 7-11: Top-𝑘 selection baseline. Left two: trajectory distribution; middle two:
obstacle distribution; right one: probability density function of behavior values.

7.6 Discussion and Conclusion

RoCUS enables humans to build better mental models of robot controllers. Com-
pared to existing evaluations on task-completion metrics for hand-designed scenarios,
RoCUS generates scenarios and trajectories that highlight any given behavior in a
principled way. We used it to uncover non-obvious insights in two domains and help
with debugging and improving a controller.

While RoCUS is mainly a tool to analyze robot controllers in simulation as part
of comprehensive testing before deployment, it can help understanding (anomalous)
real world behaviors as well. When an anomaly is observed, RoCUS can find more
samples with the anomaly for developers to identify patterns of systematic failures.
Furthermore, RoCUS is not inherently limited to simulation: it only requires trajec-
tory roll-out on specific scenarios. For the arm reaching task, this is easy in the real
world. For autonomous driving, “recreating” a traffic condition that involves other
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vehicles may be hard. However, a key feature of RoCUS is the decoupling of the sce-
nario and the controller algorithm, which allows testing on simpler scenario variants
(e.g., with props instead of real cars).

There are multiple directions to extend and complement RoCUS for better usability
and more comprehensive functionality. First, while we only used RoCUS on indi-
vidual controllers, future work can readily extend it to compare two controllers by
defining behavior functions that take in the scenario and two trajectories, one from
each controller, and compute differential statistics. For example, this could be used
to find road conditions that lead to increased swerving behavior of a new AV con-
troller, compared to the existing one. Such testing is important to gain a better
understanding of model updates [13], and is particularly necessary for ensuring that
these updates do not unintentionally introduce new problems.

In addition, sometimes it is important to understand particular trajectories sampled
by RoCUS. For example, which sensor input (e.g., lidar or camera) is most important
to the current action (e.g., swerving)? Why does the controller take one action rather
than another (e.g., swerving rather than braking)? Preliminary investigation into
this explainable artificial intelligence (XAI) problem in the context of temporally
extended decision making has been undertaken [53, 169], but various issues with
existing approaches have been raised [11] and future research is needed to address
them.

Finally, an important step before actual deployment is to design appropriate user
interfaces to facilitate the two-way communication between RoCUS and end-users.
In one direction, the user needs to specify the behavior of interest, and it would
be desirable for it to involve as little programming as possible, especially for non-
technical stakeholders. In the other direction, RoCUS needs to present the sample
visualization, and potentially model explanations as described above, for users to
inspect. Here, it is important for the information to be accurate but at the same time
not overwhelming.

Overall, RoCUS is a framework for systematic discovery and inspection of robotic
controller behaviors. We hope that the demonstrated utility of RoCUS sparks further
efforts towards the development of other tools for more holistic understanding of robot
controllers.
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7.7 Appendix

7.7.1 Dynamical System Modulation

We review the DS formulation proposed by Huber et al. [68], and present our problem-
specific adaptations for 2D Navigation in Appendix 7.7.3 and 7DoF arm reaching in
Appendix 7.7.4. A reader familiar with DS motion controllers may skip this review.

Given a target x* and the robot’s current state x, a linear controller u(𝑥) = x* − x

will guarantee convergence of x to x* if there are no obstacles. However, it can
easily get stuck in the presence of obstacles. Huber et al. [68] proposes a method to
calculate a modulation matrix 𝑀(x) at every x such that if the new controller follows
u𝑀(x) = 𝑀(x) · u(x), then x still converges to x* but never gets stuck, as long as
x* is in free space. The objective of the DS modulation is to preserve the linear
controller’s convergence guarantee while ensuring that the robot is never in collision.

The modulation matrix 𝑀(x) is computed from a list of obstacles, each of which is
represented by a Γ-function. For the 𝑖-th obstacle 𝒪𝑖, its associated gamma function
Γ𝑖 must satisfy the following properties:

• Γ𝑖(x) ≤ 1 ⇐⇒ x ∈ 𝒪𝑖,

• Γ𝑖(x) = 1 ⇐⇒ x ∈ 𝜕𝒪𝑖,

• ∃ r𝑖, s.t. ∀ 𝑡1 ≥ 𝑡2 ≥ 0,∀u,Γ𝑖(r𝑖 + 𝑡1u) ≥ Γ𝑖(r𝑖 + 𝑡2u).

In words, the Γ-function value needs to be less than 1 when inside the obstacle,
equal to 1 on the boundary, greater than 1 when outside. This function must also
be monotonically increasing radially outward from a specific point r𝑖. This point
is dubbed the reference point. From this formulation, r𝑖 ∈ 𝒪𝑖 and any ray from r𝑖

intersects with the obstacle boundary 𝜕𝒪𝑖 exactly once. The latter property is also the
definition that 𝒪𝑖 is “star-shaped” (Figure 7-13). For most common (2D) geometric
shape such as rectangles, circles, ellipses, regular polygons and regular stars, r𝑖 can
be chosen as the geometric center.

We first consider the case of a single obstacle 𝒪, represented by Γ with reference point
r. Use 𝑑 to denote the dimension of the space. We define

𝑀(x) = 𝐸(x)𝐷(x)𝐸−1(x). (7.8)

We have

𝐸(𝑥) = [s(x), e1(x), ..., e𝑑−1(x)], (7.9)
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where

s(x) =
x− r

||x− r||
(7.10)

is the unit vector in the direction of x from r, and e1(x), ..., e𝑑−1(x) form a 𝑑 − 1

orthonormal basis to the gradient of the Γ-function, ∇Γ(x) representing the nor-
mal to the obstacle surface. 𝐷(x) is a diagonal matrix whose diagonal entries are
𝜆𝑠, 𝜆1, ..., 𝜆𝑑−1, with

𝜆𝑠 = 1− 1

Γ(x)
, (7.11)

𝜆1, ..., 𝜆𝑑−1 = 1 +
1

Γ(x)
. (7.12)

each eigenvalue determines the scaling of each direction. Conceptually, as the robot
approaches the obstacle, this modulation decreases the velocity for the component
in the reference point direction (i.e., toward obstacles) while increases velocity for
perpendicular components. The combined effect results in the robot being deflected
away tangent to the obstacle surface.

With 𝑁 obstacles, we compute the modulation matrix 𝑀𝑖(x) for every obstacle using
the procedure above and the individual controllers u𝑀𝑖

(x) = 𝑀𝑖(x) · u(x). The final
modulation is the aggregate of all the individual modulations. However, a simple
average is insufficient since closer obstacles need to have higher influence to prevent
collisions.

Huber et al. [68] proposed the following aggregation procedure. Let u𝑖 denote the
individual modulations, with norms 𝑛𝑖. The aggregate modulation u is calculated as

u = 𝑛𝑎u𝑎, (7.13)

where 𝑛𝑎 and u𝑎 are the aggregate norm and direction.

The aggregate norm is computed as

𝑛𝑎 =
𝑁∑︁
𝑖=1

𝑤𝑖𝑛𝑖, (7.14)

𝑤𝑖 =
𝑏𝑖∑︀𝑁
𝑗=1 𝑏𝑗

, (7.15)

𝑏𝑖 =
∏︁

1≤𝑗≤𝑁,𝑗 ̸=𝑖

Γ𝑗(x). (7.16)
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The above definition ensures that
∑︀𝑁

𝑖=1𝑤𝑖 = 1, and 𝑤𝑖 → 1 when x approaches 𝒪𝑖

(and only 𝒪𝑖, which holds as long as obstacles are disjoint).

u𝑎 is instead computed using what Huber et al. [68] calls “𝜅-space interpolation.”
First, similar to the basis vector matrix 𝐸(x) introduced above, we construct another
such matrix, but with respect to the original controller x* − x. We denote it as
𝑅 = [(x* − x)/||x* − x||, e1, ..., e𝑑−1], where e1, ..., e𝑑−1 are again orthonomal vectors
spanning the null space.

For each u𝑖, we compute its coordinate in this new 𝑅-frame as û𝑖 = 𝑅−1u𝑖. Its
𝜅-space representation is

𝜅𝑖 =
arccos(û

(1)
𝑖 )∑︀𝑑

𝑚=2 û
(𝑚)
𝑖

[︁
û
(2)
𝑖 , ..., û

(𝑑)
𝑖

]︁𝑇
∈ R𝑑−1, (7.17)

where the superscript (𝑚) refers to the 𝑚-th entry. 𝜅𝑖 is a scaled version of the
û𝑖 with the first entry removed. We perform the aggregation in this 𝜅-space using
the weights 𝑤𝑖 calculated above (7.18), transform it back to the 𝑅-frame (7.19), and
finally transform it back to the original frame (7.20):

𝜅𝑎 =
𝑁∑︁
𝑖=1

𝑤𝑖𝜅𝑖 (7.18)

û𝑎 =

[︂
cos(||𝜅𝑎||),

sin(||𝜅𝑎||)
||𝜅𝑎||

𝜅𝑇
𝑎

]︂𝑇
(7.19)

u𝑎 = 𝑅û𝑎. (7.20)

As mentioned in Eq. 7.13, the final modulation is u = 𝑛𝑎u𝑎.

Figure 7-12: Tail effect (left) and its removal (right), reproduced from Figure 7 by
Khansari-Zadeh and Billard [81]. The target is on the far right side.
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Tail-Effect

An artifact of the above formulation is the “tail-effect,” where the robot is modulated
to go around the obstacle even when it has passed by the obstacle and the remaining
trajectory has no chance of collision under the non-modulated controller. This effect
has been observed by Khansari-Zadeh and Billard [81] for a related but different
type of modulation. Figure 7-12, reproduced from the paper by Khansari-Zadeh and
Billard [81, Figure 7], shows the tail effect on the left and its removal on the right.
This tail effect induces the placement of obstacles at the end of the “diagonal corridor”
as seen in our straight-line deviation experiments (Figure 7-6, left). If desired, the
DS formulation can be modified to remove this effect.

7.7.2 2D Environment Details

In this domain, the environment is the area defined as [𝑥min, 𝑥max]× [𝑦min, 𝑦max]. The
goal is to navigate from [𝑥start, 𝑦start] to [𝑥goal, 𝑦goal]. We define a flexible environment
representation as a summation of radial basis function (RBF) kernels centered at so-
called obstacle points. Specifically, given 𝑁𝑂 obstacle points p1,p2, ...,p𝑁𝑂

∈ R2, the
environment is defined as

𝑒(p) =

𝑁𝑂∑︁
𝑖=1

exp
(︀
−𝛾||p− p𝑖||22

)︀
, (7.21)

and each point p is an obstacle if 𝑒(p) > 𝜂, for 𝜂 < 1 to ensure each obstacle point p𝑖

is exposed as an obstacle. Our environments are bounded by [−1.2, 1.2]× [−1.2, 1.2],
and the goal is to navigate from [−1,−1] to [1, 1]. 𝑁𝑂 = 15 and 𝑝𝑖 coordinates are
sampled uniformly in 𝑥𝑖, 𝑦𝑖 ∈ [−0.7, 0.7]. A smaller 𝛾 and 𝜂 makes the obstacles larger
and more likely to be connected; we choose 𝛾 = 25 and 𝜂 = 0.9. Figure 7-4 shows
random obstacle configurations demonstrating high diversity in this environment.
We also implement a simple simulator: given the current robot position [𝑥, 𝑦] and the
action [∆𝑥,∆𝑦], the simulator clamps ∆𝑥,∆𝑦 to the range of [-0.03, 0.03], and then
moves the robot to [𝑥 +∆𝑥, 𝑦 +∆𝑦] if there is no collision, and otherwise simulates
a frictionless inelastic collision (i.e., compliant sliding) that moves the robot tangent
to the obstacle.

7.7.3 Details of 2D Navigation Controllers

IL Controller The imitation learning controller is a memoryless policy imple-
mented as a fully connected neural network with two hidden layers of 200 neurons
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each and ReLU activations. The input is 18 dimensional, with two dimensions for the
current (𝑥, 𝑦) position of the robot, and 16 dimensions for a lidar sensor in 16 equally-
spaced directions, with a maximum range of 1. The network predicts the heading
angle 𝜃, and the controller operates on the action of [∆𝑥,∆𝑦] = [0.03 cos 𝜃, 0.03 sin 𝜃].

The network is trained on smoothed RRT trajectories. Specifically, we use the RRT
controller to find and discretize a trajectory. Then the smoothing procedure repeat-
edly replaces each point by the mid-point of its two neighbors, absent collisions. When
this process converges, each point on the trajectory becomes one training data point.

Since only local observations are available and the policy is memoryless, the robot
may get stuck in obstacles, which happens in approximately 10% of the runs. In
addition, while the output target is continuous, a regression formulation with mean-
squared error (MSE) loss is inappropriate, due to multimodality of the output. For
example, when the robot is facing an obstacle, moving to either left or right would
avoid it, but if both directions appear in the dataset, the MSE loss would drive the
prediction to the average, resulting in a head-on collision. This problem has been
studied for tasks such as grasping [174] and autonomous driving [166]. We follow the
latter and treat this problem as classification with 100 bins in the [0, 2𝜋] range.

DS Controller For the DS controller, there are two technical challenges in using
the modulation [68] on our RBF-defined environment. First, we need to identify and
isolate each individual obstacle, and second, we need to define a Γ-function for each
obstacle.

To find all obstacles, we discretize the environment into an occupancy grid of resolu-
tion 150× 150 covering the area of [−1.2, 1.2]× [−1.2, 1.2]. Then we find connected
components using flood fill, and each connected component is taken to be an obstacle.

To define a Γ-function for each obstacle, we first choose the reference point as the
center of mass of the connected component. Then we cast 50 rays in 50 equally spaced
directions from the reference point and find the intersection point of each ray with
the boundary of the connected component. Finally, we connected those intersections
in sequence and get a polygon. In case of multiple intersection points, we take the
farthest point as vertex of the polygon, essentially completing the non-star-shaped
obstacle to be star-shaped, as shown in Figure 7-13.

Given an arbitrary point x, we define

Γ(x) =
||x− r||
||i− r||

, (7.22)
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Figure 7-13: Left: an obstacle which is not star-shaped. Some radial lines extending
from the obstacle’s reference point cross the boundary of the obstacle twice. Right:
the same obstacle, modified to instead be star-shaped.

where r is the reference point and i is the intersection point with the polygon of the
ray from r in x− r direction. It is easy to see that this Γ definition satisfies all three
requirements for Γ-functions listed in Appendix 7.7.1.

Finally, to compensate for numerical errors in the process (e.g., approximating obsta-
cles with polygons), we define the control inside obstacle to be the outward direction,
which helps preventing the robot from getting stuck at obstacle boundaries in prac-
tice. Three examples of DS modulation of the 2D navigation environment are shown
in Figure 7-14.

Figure 7-14: Streamlines showing the modulation effect of the dynamical system for
three 2D navigation tasks. The environments correspond to the first three examples
of Figure 7-4. Green dots are starting positions and red stars are navigation targets.

7.7.4 Details of 7DoF Arm Reaching Controllers

RRT Controller Since the target location is specified in the task space, we first
find the target joint space configuration using inverse kinematics (IK). The initial
configuration starts with the arm positioned down on the same side as the target. If
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the IK solution is in collision, we simulate the arm moving to it using position control,
and redefine the final configuration at equilibrium as the target (i.e., its best effort
reaching configuration). We solve the IK using Klamp’t [59].

RL Controller The RL controller implements the proximal policy gradient (PPO)
algorithm [137]. The state space is 22-dimensional and consists of the following:

• 7D joint configuration of the robot,
• 3D position of the end-effector,
• 3D roll-pitch-yaw of the end effector,
• 3D velocity of the end-effector,
• 3D position of the target,
• 3D relative position from the end-effector to the target.

The action is 7-dimensional for movement in each joint, which is capped at [−0.05, 0.05].

Both the actor and the critic are implemented with fully connected networks with two
hidden layers of 200 neurons each, and ReLU activations. The action is parametrized
as Gaussian where the actor network predicts the mean, and 7 standalone parameters
learns the log variance for each of the 7 action dimensions. At test time, the policy
deterministically outputs the mean action given a state.

DS Controller For the DS controller in 7DoF arm reaching, we face the same
challenges as in 2D navigation: defining an appropriate Γ-function for the obstacle
configuration that holds the three properties introduced by Huber et al. [68] (listed
in Appendix 7.7.1). Additionally, the DS modulation technique does not consider the
robot’s morphology, end-effector shape, or workspace limits because it only modu-
lates the state of a point-mass. Thus, we implement several adaptations. First, we
modulate the 3D position of the tip of the end-effector. The desired velocity of the
end-effector tip, given by the modulated linear controller, is then tracked by the 7DoF
arm via the same position-level IK solver as the RRT controller.

Second, we used a support vector machine (SVM) to learn the obstacle boundary
from a list of points in the obstacle and free spaces, an approach originally proposed
by Mirrazavi Salehian et al. [105]. Then the decision function of the SVM is used as
the Γ-function. As shown in Figure 7-15, we discretize the 3D workspace of the robot
and generate a dataset of points in the obstacle space as negative class and those in
the free space as positive class.

Using the radial basis function (RBF) kernel 𝐾(x1,x2) = 𝑒−𝛾||x1−x2||2 , with kernel
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Figure 7-15: Left: the division of 3D space as either containing an obstacle or free
space. This data is used to train an SVM, which acts as an interpolator. The
classification scores of the SVM are used as the Γ function for this 3D reaching task.
Right: a 2D slice showing the smoothed Γ scores.

width 𝛾, the SVM decision function Γ(x) has the following form:

Γ(x) =
𝑁𝑠𝑣∑︁
𝑖=1

𝛼𝑖𝑦𝑖𝐾(x,x𝑖) + 𝑏 =
𝑁𝑠𝑣∑︁
𝑖=1

𝛼𝑖𝑦𝑖𝑒
−𝛾||x−x𝑖||2 + 𝑏, (7.23)

and the equation for ∇Γ(x) is naturally derived as follows:

∇Γ(x) =
𝑁𝑠𝑣∑︁
𝑖=1

𝛼𝑖𝑦𝑖
𝜕𝐾(x,x𝑖)

𝜕x
= −𝛾

𝑁𝑠𝑣∑︁
𝑖=1

𝛼𝑖𝑦𝑖𝑒
−𝛾||x−x𝑖||2(x− x𝑖). (7.24)

In Eq. 7.23 and 7.24, x𝑖 (𝑖 = 1, ..., 𝑁𝑠𝑣) are the support vectors from the training
dataset, 𝑦𝑖 are corresponding collision labels (−1 if position is collided, +1 otherwise),
0 ≤ 𝛼𝑖 ≤ 𝐶 are the weights for support vectors and 𝑏 ∈ R is decision rule bias.
Parameter 𝐶 ∈ R is a penalty factor used to trade-off between errors minimization and
margin maximization. We empirically set the hyper-parameters of the SVM to 𝐶 = 20

and 𝛾 = 20. Parameters 𝛼𝑖 and 𝑏 and the support vectors x𝑖 are estimated by solving
the optimization problem for the soft-margin kernel SVM using scikit-learn. Using
this learned Γ-function, Figure 7-16 shows two examples of the modulated trajectory.

Finally, given a desired modulated 3D velocity for the end-effector tip, ẋ𝑀 = u𝑀(x),
we compute the next desired 3D position by numerical integration:

x𝑡+1 = x𝑡 + u𝑀(x𝑡)∆𝑡 (7.25)

where x𝑡,x𝑡+1 ∈ R3 are the current and next desired 3D position of the tip of the
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Figure 7-16: Cross-sections showing streamlines of the dynamical system modulation
effect for two distinct targets in the 3D reaching task. Red crosses indicate reference
points. Green diamond is the initial position of the end-effector for all experiments.

end-effector and ∆𝑡 = 0.03 is the control loop time step. x𝑡+1 is then the target in
Cartesian world space coordinates that defines the objective of the position-based IK
solver implemented in Klamp’t [59].

7.7.5 DS Improvement for 7DoF Arm Reaching

The DS controller provides guarantees of convergence to a target in the space where
modulation is applied (i.e., task-space in our experiments). To adopt this controller
for obstacle avoidance with a robot manipulator, Huber et al. [68] simplifies the robot
to a spherical shape with center at the end-effector of a 7DOF arm. This translates
to considering the robot as a zero-mass point in 3D space but with the boundaries of
the obstacles (described by Γ-functions) expanded by a margin with the size of the
radius of the sphere.

Due to the rectangular shape (6.3 × 20.7 × 14cm) of the Franka robotic hand, fitting
a sphere with the radius of the longest axis will over-constrain the controller and
drastically reduce the target regions inside the table dividers. We thus implemented
the obstacle clearances by extruding the edges of the top table divider by half of the
length of the robot’s end-effector (10cm) and the width of the divider by half of the
height (7cm). Intuitively, this should be enough clearance to avoid the robot’s end-
effector colliding with the table dividers. However, when coupling the DS controller
with the IK solver to control the 7DoF arm, we noticed that the success rate was
below 15%, whereas the success rate is 100% when controlling the end-effector only.
We then sampled, via RoCUS, the target locations for the minimal final end-effector
distance to target and noticed that all of the successful runs were located on the

176



left-side of the partition (Figure 7-8 center right).

Since the DS controller approach does not consider collision avoidance in joint-space,
in a constrained environment, the robot’s forearm or elbow might get stuck on the
edges of the table divider – even though the end-effector is avoiding collision. Due
to the asymmetric kinematic structure of the robot arm, it is more prone to these
situations on the right side of the table divider. Such an insight is not easy to
discover as one must understand how the robot will behave in joint space based on
its kinematic structure and the low-level controller used (position-based IK). We thus
extended the edge extrusions to 20cm. This change improved the controller success
rate and behavior drastically as shown in (Figure 7-8 rightmost).
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Chapter 8

Towards Trustworthy Machine
Learning

8.1 The Roles of Model Explanations

As black-box models are increasingly used to make important decisions, a good un-
derstanding into their various properties is crucial for many reasons. From a legal
perspective, there have been various government regulations that require the deployed
models to be able to “explain themselves,” so that the predictions can be more easily
audited [31]. At this level, purely black-box models without any explanation support
are simply illegal to use in many settings.

From a practical perspective, model explanations may help developers proactively
identify potential problems. For example, if a cancer detection model exploits the
watermark spurious correlation, as discussed in Chapter 4, then an explanation that
reveals this working mechanism could save people from the future frustration of the
model not seeming to work on different sources without the watermark. In addition,
explanations may also help identify the use of protected features in discriminative
manners and the leakage of training data for generative models, two of the most
important topics in fairness and privacy.

Last, from a business perspective, the owner of the model, such as a bank that uses
a mortgage approval classifier, has an interest to keep extended relationships with
its customers, including when they receive adverse predictions such as an application
denial. Retaining the relationship often requires providing justifications of the model
decision, so as to lend legitimacy and reasonableness to it, and, more importantly,
actionable recourse [155] so that the customer could receive a favorable decision if
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they follow the recommendation. The latter part is the main topic of counterfactual
explanations [157], which we did not cover in this thesis, except slightly at the end
of Chapter 5 but represents another family of model explanations distinct from the
feature attribution family.

8.2 Thesis Contributions

Recognizing the importance of the role of model explanations in model understanding,
this thesis contributes new methods, frameworks and evaluations to the interpretabil-
ity and transparency of black-box models. These contributions can be considered
as answers to the questions of “how to explain model predictions,” “how to evaluate
model explanations,” and “what model predictions to explain.” As a whole, these three
questions and the corresponding answers illuminate a model understanding pipeline,
shown in Figure 1-1, which is reproduced in Figure 8-1 for convenience.

Input Local Explanation Model Understanding

These features 

are important in 

these situations. 

Model

Correctness Understandability

Bayes-TrEx
RoCUS

Target 
Behavior

Figure 8-1: The model understanding pipeline (reproduced from Figure 1-1).

8.2.1 How to Explain Model Predictions?

In the background overview of Chapter 2, we see that model explanations, specif-
ically feature attributions, are mainly defined according to our intuitive notions of
what feature importance means. For example, the gradient saliency [142] reflects the
notion that the feature importance should be the model prediction sensitivity under
local feature value perturbation. However, recognizing that these definitions are then
evaluated on a set of different metrics for quality assessment, such as comprehensive-
ness and sufficiency [39], Chapter 3 proposes to use the evaluation concepts directly as
definitions, and more generally proposes a duality between definitions and evaluations
in model interpretability.

180



In particular, for an evaluation metric 𝑚, such as comprehensiveness, Chapter 3
proposes the concept of 𝑚-solving explanation 𝑒* on a given input as the one that
achieves the optimal value of 𝑚. Given the existence of 𝑒* (and even closed-form
expressions for some 𝑚), it is not clear why we should use anything other than 𝑒* if
we use 𝑚 to represent the explanation quality.

One possible concern is the hardness of optimization for all but the trivial (and not-so-
good) metrics. For example, the two most commonly used metrics, comprehensiveness
and sufficiency, are expressed as a summation of model prediction changes under
partial feature removal or insertion. While the exact optimization is combinatorial
and hard, both metrics admit very efficient approximate beam search algorithms,
whose resulting explanations are empirically demonstrated to outperform existing
ones (such as the gradient saliency) on the comprehensiveness and sufficiency metric
values. Thus, given that a large number of works evaluate their proposed explanations
on these two metric values, it seems that the beam search should be the end of this
series of investigation.

However, another and perhaps more important concern is that of Goodhart’s law,
which says, in this context, because these two metrics are explicitly optimized against
by the beam search algorithm, they cease to be good metrics. Considering that we
do not know what the “perfect” metric is (which if we did, we would just optimize
against), we investigate this problem from two angles – explanation overfitting to the
metric and overfitting to the model. In both cases, we fail to find convincing evidence
that the prophecy of Goodhart’s law is fulfilled.

In addition, we set up a dataset modification procedure to induce a ground truth
of model working mechanism, as discussed in more detail in Chapter 4. Across a
variety of settings, we find that our beam search explanation also performs favorably
or competitively with respect to existing methods. Thus, we advocate for using search
methods as a general paradigm to find the metric-solving explanations directly, and
for future work to establish a better understanding of the properties of the resulting
explainer, in relationship to the underlying metric that is being optimized.

8.2.2 How to Evaluate Model Explanations?

Correctness

Other than a new way of defining explanations, the duality observation provides the
analogous perspective of using existing definitions as evaluations of model explana-
tions. While we did not empirically explore this in Chapter 3, a deeper study on
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evaluation metrics, and a more liberal view of what concepts can be used as evalu-
ations, could be insightful as recent works [27, 116] have suggested poor alignment
between evaluation methods and between evaluation metric values and effectiveness
as demonstrated in user studies.

Fundamentally, these metrics are proxy metrics because the ground truth model ex-
planation is not available – this is the very goal of interpretability research! In Chapter
4, we approach this problem from a different perspective and propose a dataset modi-
fication procedure to induce a ground truth reasoning mechanism for high-performing
models. We achieve this in two steps. First, we weaken, or even erase, the existing
correlations between inputs and outputs, such that any model could not achieve very
high performance using any means. Then we carefully inject highly controlled fea-
tures according to the new label, which enables a model to make highly accurate
predictions. If we do observe this high accuracy, then the model is guaranteed to use
the features that we inject, and we therefore can evaluate how well feature attribution
methods can detect the usage of these features.

In our experiments, we evaluate explanations for both image and text classifiers,
focusing mainly on artifact-like features such as adding a watermark to an image
or changing the article words (e.g., “a” and “the”) in text. While certain explanation
methods are effective at detecting certain features, our findings are overall concerning.

We find that the effectiveness of any given method tends to vary widely across feature
types, and there is no single method that consistently outperforms the rest. This
inconsistency highlights the issue with the use of feature attribution explanations to
identify dataset artifacts and spurious correlations when they are unknown. However,
an ensemble of all these methods could be result in a detector with reasonably high
recall (i.e., a feature is unlikely to be missed by all of the methods), potentially at the
cost of low precision (i.e., a feature is also unlikely to be clearly identified by every
method). We leave this direction of investigation to future work.

Understandability

Furthermore, we argue that correctness should not be the sole desideratum for model
explanations. In particular, as model explanations are ultimately used by humans to
understand the model, the soundness this model understanding process needs to be
be carefully characterized, yet no such mathematical formulations exist. In Chapter
5, we propose a novel factor, understandability, and demonstrate its necessity for
achieving good explanations.

We introduce the explanation summary (ExSum) framework, which establishes a
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rigorous definition of “model understanding,” intended to replace the currently ad
hoc practices of consuming and understanding local model explanations. The indi-
vidual pieces of model understanding are called ExSum rules and their aggregate is
called an ExSum rule union. This rigorous definition allows for quantitative evalua-
tions of model understanding (i.e., ExSum rules and rule unions). We then propose
three metrics: coverage, validity and sharpness. Coverage captures the applicabil-
ity of the model understanding – is it about a broad or narrow aspect of how the
model works(e.g., “adjectives are important for the prediction” vs. “non-negated ad-
jectives in short sentences are important only for the positive prediction”). Validity
captures the correctness of model understanding (i.e., actually supported by local ex-
planations). Sharpness captures the precision of our model understanding statement
(e.g., “all adjectives have very high contributions” vs. “some adjectives have very high
contributions while others less so”). These metrics often trade off against each other,
demonstrating the difficulty of obtaining very high-quality model understanding from
local explanations. Last, we also provide a web application in the Python exsum pack-
age for assisting human users to come up with well-calibrated model understanding
supported by model explanations.

Using ExSum, we evaluate our understanding of two models, a sentiment classifier
and a paraphrase detector. In both cases, we find significant limitations in our model
understanding as evidenced by the metric scores. At the same time, however, we
also clearly see the advantage of using ExSum to synthesize model understanding
compared to current, more ad hoc approaches in that the former reveals insights that
have been overlooked by the latter.

Last, the principles of understandability can be considered as a generalization of
several evaluation aspects like plausibility and robustness, which provides a unified
setup for discussing them. We additionally highlight its applicability to explanation
types beyond feature attribution, and an extension to instance-based explanations is
briefly explored.

8.2.3 What Model Predictions to Explain?

Besides definitions and evaluations of explanations, the final piece to complete our
model understanding pipeline looks at the very beginning of it: the source of the
inputs. The current practices use test set instances, which are often selected either
randomly or to highlight certain model reasoning. The ExSum framework advocates
for the use of the entire test set for more detailed and quantitative inspections, which
can be considered as an improvement of this ad hoc approach.
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However, both approaches are fundamentally limited to the test set, which may not
have good (or even any) coverage of certain model behaviors, such as when the model
is likely to be confused between two classes, or how well the model adapts to distri-
bution shift. Answering these questions should ideally be done by a behavior-driven
approach, where we start from the target behavior that we want to study and identify
instances which highlight the behavior. Each behavior is a function of data instance
and model prediction. For example, a covariate shift failure behavior requires the
data instance to be from the shifted distribution and the model prediction to not
equal to the true label. Now that we know what behaviors these instances induce, we
can use any interpretability method to study why such behavior happens, which is
the purpose of the rest of the model understanding pipeline. Because studying these
examples gives us a better understanding into the model, we call this approach model
transparency-by-example (TrEx).

Chapter 6 introduces the technical contribution to this approach. We first formal-
ize a behavior as a function of data instance and model prediction, and then set
up a Bayesian posterior inference procedure under which, with a suitably defined
prior and likelihood function, the behavior-conforming instances can be considered as
samples from the corresponding posterior distribution, obtainable by Markov-chain
Monte Carlo sampling methods. This framework is hence named Bayes-TrEx. In
the experiments, we analyze three image models for digit recognition, clothes recog-
nition and visual reasoning, respectively. Using Bayes-TrEx, we can efficiently find
instances that induce a variety of behaviors, which would otherwise be hard or im-
possible using the test set. The inspection of these instances helps us build a more
well-rounded understanding of the capability and blind spots of the model, and we
describe the use of a saliency map analysis to infer the reason for the occurrence of a
behavior.

Building upon Bayes-TrEx, Chapter 7 extends it to study robotic controllers. Anal-
ogous to how a behavior in Bayes-TrEx is a function of data instance and model
prediction, a robot behavior is a function of task scenario and generated trajectory.
We propose a suite of robot-centric behavior definitions, which can be generally clas-
sified into intentional and emergent ones. Intentional behaviors are those that are
explicitly optimized or considered when defining or learning the robot controller, such
as task completion success and energy consumption. By contrast, emergent behaviors
(desirable or undesirable) are ones that emerge as a result of the controller definition
or learning, but are not explicitly considered as an objective. Examples include the
legibility [41] or the expressed emotion [145] of the trajectory.
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We present robot controller understanding via sampling (RoCUS), which takes a
given behavior and finds scenarios (e.g., configurations of robot start and goal lo-
cations) where the behavior is exhibited by the generated trajectory. The technical
contribution beyond Bayes-TrEx is the introduction of the 𝛼 parameter, which in-
tuitively represents the trade-off between scenario typicality (whether this scenario
is an edge case) and behavior conformity (how much the trajectory in this scenario
highlights the behavior). In addition, RoCUS can also find scenarios with maxi-
mal values of behaviors that is unbounded from above, a situation not supported by
Bayes-TrEx.

Using RoCUS, we analyze two robot domains, a 2D navigation task with free form
obstacles, and a 7 degree-of-freedom arm reaching task with obstacles over target
positions. In both cases, RoCUS can identify subtle properties for various robot
controllers that are either defined (e.g., rapid-exploring random trees) and learned
(e.g., reinforcement learning policies), which shed light on the properties of these
controllers and the environments. In the case of a dynamical system-based controller
on the arm reaching task, RoCUS also helps identify an issue in its specification
caused by the left/right asymmetry in the robot configuration space due to that of
the arm kinematic structure.

8.3 Outlook

In some sense, the rigorous examination of the model understanding pipeline in the
thesis raises more questions than it answers. In this final part, we give some future
directions that would extend and complement works described here to make model
explanations truly deliver their promise of helping people understand models.

8.3.1 Improving Feature Attributions

The investigation in Chapter 4 exhibits several issues with current feature attribution
explanations. First, deducing the reason for a prediction as the absence of a certain
feature is harder than the presence of a feature. For example, if all positive images
contain a watermark at the top right corner while none of the negative images have any
watermark in a dataset, then many feature attribution methods struggle to explain
the reason for a negative prediction is the absence of the watermark, while many of
them can highlight the watermark on a positive image for the positive prediction. This
is somewhat expected, as the goal of feature attribution is to explain the importance
or contribution of every present feature. However, a “negative default” can be a very
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common component in the working mechanism of many models even without spurious
correlations like the watermark. For example, a medical diagnosis model may look
out for the symptom corresponding to each disease on the X-ray image, and make the
no-disease prediction when none is found, yet this prediction can be hard to explain
with feature attributions.

One possible remedy is for the explainer to learn to generate an explicit negative
default baseline (which may be different for different inputs), and compute feature
attribution values with respect to it. Thus, when the prediction is negative, the
explanation could simply be the high similarity between the input and the baseline,
and the explanations for other classes could represent the deviations of the baseline.
As mentioned in Chapter 2, the idea of baseline is already used by methods such as
grad×input and IntGrad [146], but these methods typically choose the baseline of
zero feature values (e.g., a black image), which is often out of the data distribution.

In addition, results on the text classifiers in Chapter 4 reveal a curious issue with
the attention mechanism: when the spurious correlation is very obvious easy to learn
without it, the attention weights often fail to reveal the true feature importance.By
comparison, on harder tasks for which attentions are useful, the attention scores are
often much more reasonable. For example, those for machine translation models
generally highlight the word and phrase alignment between source and target lan-
guages [158]. Thus, it is worth investigating the extent to which attention scores are
correlated with the necessity of the attention mechanism in achieving high model per-
formance. In other words, attention weights may only be “correct” when the model
without the attention mechanism cannot achieve the same level of high accuracy. If
this trend is confirmed, we should be wary of interpreting attention scores as fea-
ture attributions, especially for easy tasks. In this case, regularizing or otherwise
encouraging the attention scores to be more correct is much needed, so that we can
unconditionally rely on them.

8.3.2 Rethinking Feature Attributions

While feature attribution explanations are very intuitive, they are also severely limited
by the format of assigning a single score for each feature. This mode of operation
works best when the true feature importance is additive – each feature contributes a
set amount regardless of the values of other features – such as in the case of a linear
regression, but this assumption rarely holds for neural network models due to their
non-linearity.

When the contribution of a feature depends on the values of others, existing ap-
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proaches deal with this problem either implicitly [128] or explicitly [99] aggregate
contributions under different circumstances into one. Thus, besides computation of
these importance scores, another problem is their presentation. As long as the ex-
planation is presented in this one-score-per-feature format, there is the risk that it
would be mis-interpreted by the users.

How should we best present feature attributions? Novel explanation methods propose
to explicitly compute interactions among features [25, 151]. However, visualizing the
interactions of individual pairs or triplets of features quickly becomes intractable,
when the number of features is large. Thus, aggregating a large number of feature in-
teractions into a small number of semantic groups would be crucial for understanding,
and such aggregation is exactly what ExSum advocates.

Moving beyond feature attribution, is this type of explanation even what we want?
Although it provides a succinct way of exhibiting the importance of different features,
the essence of the conveyed information is counterfactual in nature: a feature being
important means that the model prediction would change a lot if the feature were
different or withheld. Thus, a feature attribution explanation is intrinsically an aggre-
gate of a set of counterfactual explanations, each of which is represented by (�̂�, 𝑓(�̂�)),
which explains the change in prediction 𝑓(�̂�)− 𝑓(𝑥) with the change in input �̂�− 𝑥.
With many widely used approaches for generating counterfactual explanations, we
could again follow the spirit of ExSum to aggregate them in ways other than the one
adopted by feature attribution explanations. For example, aggregating all counter-
factual explanations that change either of two features could demonstrate that the
positive prediction is dependent on the presence of either features (i.e., logical OR),
a relationship hard to explain with vanilla feature attributions.

8.3.3 Connecting Explanations with Use Cases

Different stakeholders have different uses for explanations. Chapter 4 mainly focuses
on identifying the impact of spurious correlations [47], one of the central concerns
of model developers. While our investigations demonstrate mostly negative results
in using feature attribution methods as the definitive tools for this purpose, the
variability in the performance of each explainer (i.e., different methods are better
suited for different artifact types) could foreshadow a more general sense of variability:
different methods are better suited for different purposes, of which identifying spurious
correlations is but one.

A dilemma that developers frequently face is when and whether to update the cur-
rent model with a new one that has better performance metrics on paper but may
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have unknown adverse properties [13]. In this case, generating and analyzing model
explanations, besides model transparency techniques like Bayes-TrEx, may provide
better understanding into the new model.

In the business world, the client of model training job wants to make sure that the
model is compliant to external regulations, which can prevent discrimination or pre-
scribe a basic set of guidelines for the model prediction to follow [31]. On the other side
of the table, the customer who is affected by the model prediction (e.g., a mortgage
approval model) cares about getting their unfavorable decisions turned into favorable
ones with as cheap of a cost as possible (e.g., paying down a particular credit card
account) [127]. In both cases, model explanations may again be able to satisfy the
requirement of each party.

With all these different use cases of explanations, it is likely that the best explanation
for each use case is different, and a more refined understanding into the strengths and
weaknesses of each explainer in better or worse supporting each use case goal is very
much needed. In addition, a careful taxonomy and potentially hierarchical organiza-
tion of these use cases is a worthy contribution in itself, which could not only inform
missing or overlooked ones, but also provide a shared and unified representation which
is potentially predictive of the effectiveness of different explainers.

8.3.4 User Study Results as the Definitive Standard

Related to the point made above and as a recurring theme argued in the thesis,
explanations are generated ultimately for human consumption. Thus, the definitive
standard for the quality and effectiveness of an explanation method should be the
results obtained by user studies designed to realistically replicate real-world usage
of these explanations. Nonetheless, this goal is easier said than done, and current
practices are concerning in several ways.

First, user studies are inherently costly in terms of both time and money, especially
large scale ones that are needed to cover different treatment conditions. For example,
one study [121] recruited 3,800 participants to study the utilities of explanations for
transparent and opaque models (e.g., linear regression vs. neural network). A similar
study [14] also recruited more than 1,000 participants. Most of them are carried out
via the Amazon Mechanical Turk platform mainly for the ease of subject recruitment
and relatively low rate of pay, yet this platform has been criticized on both ethical
[56] and scientific grounds [69, 132].

In addition, due to the need to replicate a realistic scenario in which the users consume
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local explanations to understand the model, the tasks covered by user studies are
highly diverse, such as fake review detection [88], house price prediction [121] and age
prediction [29]. It is not clear if and to what extent the results obtained in one setting
would transfer to a different setting, and whether a standard suite of benchmark tasks
could be possible, analogous to those in other fields such as ImageNet [37] for computer
vision and GLUE [160] for natural language processing.

Last, the study design itself is a tricky subject. First, it is tempting to infer the
effectiveness of explanations from users’ self-reported impressions of them, such as
whether they think the explanations are useful or whether they trust the model more
after having access to the explanations, as done in several studies [e.g., 78, 161].
However, Bansal et al. [14] found that such subjective ratings correlate poorly with
objective metrics of task performance. Another common practice in the forward
simulation task – asking users to predict the model prediction – is to investigate the
difference in user performance on test instances with and without explanations [e.g.,
29, 36]. Such a design, however, is easily “gameable” [123] in that the explanation can
be generated after and according to the model prediction in order to provide maximal
information on this particular prediction without actually helping people understand
the more general decision making logic employed by the model.

8.3.5 Towards a Future of Trustworthy ML

All the efforts spent, in this thesis in particular and by the community in general,
are aimed at making our machine learning systems more trustworthy and reliable.
However, the intersections between interpretability and other areas of trustworthy
ML are less studied. On the one hand, explanations can help mitigate concerns
in aspects such as model fairness, robustness and privacy. For example, similar to
how explanations can be used to identify spurious correlations (to various degrees of
success), they may also be used to identify discrimination and fairness issues, other
non-robustness reasoning patterns and leakage of sensitive information in the training
data. Overall, model explanation techniques should be useful additions to our model
development and debugging toolbox.

On the other hand, properties of fairness, robustness and privacy that we want for
models are also applicable to their explanations. Compared to the “forward” direction
of using explanations to enforce these properties, this reverse direction of studying
the properties on explanations is significantly less studied. For few instances, Bal-
agopalan et al. [12] and Dai et al. [35] recently found that the quality of model ex-
planations varies across the input space and often disfavors inputs from the minority
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group. As a result, those people need to deal with not only potentially discrimina-
tive model predictions, but also less useful or even misleading explanations for the
predictions. Similarly, the robustness in the quality of explanations could also be
concerning, where two explanations for similar inputs have very different qualities,
or for stochastically generated explanations such as LIME, different random seeds
result in explanations of highly varying quality. Note that this is different from the
the robustness of explanation values (i.e., similar inputs should have similar explana-
tions) [49], which we argue to be an aspect of understandability in Chapter 5. Last,
every explanation reveals information about the model. From a privacy and security
perspective, ensuring that an adversary could not reverse engineer the model or the
training data from explanations is equally important for the ubiquitous deployment
of model explanation techniques, yet this attack model has hardly been considered.
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