6DOF Grasp Planning by Optimizing a Deep
Learning Scoring Function

Yilun Zhou and Kris Hauser
Department of Electrical & Computer Engineering
Duke University
Durham, North Carolina 27708
Email: yilun@mit.edu, kris.hauser@duke.edu

Abstract—Learning deep networks from large simulation
datasets is a promising approach for robot grasping, but previous
work has so far been limited to the simplified problem of
overhead, parallel-jaw grasps. This paper considers learning
grasps in the full 6D position and orientation pose space for
non-parallel-jaw grippers. We generate a database of millions of
simulated successful and unsuccessful grasps for a three-fingered
underactuated gripper and thousands of objects, and then learn
a modified convolutional neural network (CNN) to predict grasp
quality from overhead depth images of novel objects. To generate
a valid grasp from the 6D pose space, we introduce a novel
optimization-based method that optimizes current suboptimal
grasps using the learned grasp quality function.

I. INTRODUCTION

Grasping is a fundamental problem in robotics, and although
grasping is intuitive for humans, it is still very hard to compute
reliable grasps for novel objects. There are several reasons for
this difficulty. First, grasp planning is challenging due to the
mathematical complexity of the problem, which involves com-
plex geometries in close proximity, hand kinematics, actuation
characteristics, and contact mechanics. Second, robots have
imperfect sensing due to sensor noise and occlusion, which
means even the most carefully planned grasps can fail if un-
certainty is not taken into account. Finally, physics simulation
of grasping is imperfect due to incompletely knowledge of
the model (such as friction coefficient), and can be very slow
when the hand and object models are complex.

Recent developments in machine learning methods have
made data-driven approaches to grasping more popular [12}
5, 16, [7]. The data could include human labeling of good
grasps [14], human teaching [1], physical experience [7], or
physics simulation [11]. The vast majority of past work on
grasping from a single camera image has considered learning
top-down grasping with parallel-jaw grippers. This simplifies
the problem because only the gripper’s x-y location, angle,
and width need to be learned as a function of image features.
Hundreds of thousands of examples are needed to learn well
even for this simplified case.

This paper uses a deep learning approach to generate grasps
in a gripper’s 6DOF position and orientation space, including
the x-, y-, z-position, and roll-, pitch-, yaw-orientation vari-
ables of the gripper. This allows our technique to be applied
to any gripper. To help generalize to new objects, we do
not model the object in 3D or define any notion of object

“pose,” but rather learn grasps from a depth map captured
by a depth camera. Our work consists of three contributions.
First, we present a simulation data generation procedure to
generate a massive amount of labeled data including both
failed and successful grasps for a 3-fingered underactuated
gripper under zero-gravity free-floating environment. Then, we
present a deep learning architecture to predict a grasp quality
score from a depth image and a grasp pose. Finally, we use the
learned network in a grasp optimization procedure that locally
optimizes a suboptimal gripper pose to have a higher score.
For grasp prediction, the learned network achieves an accuracy
rate of 83% on predicting grasp quality on novel objects. In
addition, the method achieves a successful optimization rate
of 81% on novel objects, when the initial hand pose is near a
good grasp pose. As a comparison, for a naive uniform pose
sampling procedure, only 2% are found to be successful.

For future work, we plan to investigate the effect of gravity
on grasps obtained by the optimization procedure. We also
plan to study how adaptive the control algorithm is to grasping
objects that lie on a table and among other objects.

II. RELATED WORK

Many authors have applied machine learning to robot grasp-
ing. For example, Saxena et al. [[12]] proposed a probabilistic
model to identify candidate grasps from image features. In
Jiang et al. [5]], the weight for a hand-designed scoring function
is learned to evaluate parallel gripper grasps represented as
rectangles that are annotated on object image. Goldfeder et al.
[3] devised a shape-matching method to search for grasps from
the Columbia Grasp Database [2] based on SIFT features [S]]
of object depth images.

With the current rise of deep learning, Lenz et al. [6]] used
a two-stage detection process to identify grasps from RGBD
image. In addition, Levine et al. [[7] learns a visual-servoing
control algorithm for grasping from camera image. In addition,
Mahler et al. [9, [10] proposed additional datasets for parallel
gripper grasping and deep learning methods to predict grasp
quality.

III. SIMULATION DATA GENERATION

A. Generating Grasps

We use the Klamp’t [4] simulator to generate robust grasps
by a free-floating gripper (Fig. [I) on a wide range of objects

Fig. 1.

¢ |

Fig. 2. Objects from the Princeton Shape Benchmark

The RobotiQ hand model used in this project

(Fig.). The six DOFs of the gripper’s base control its
Cartesian position x,y,z and orientation roll, pitch, yaw.
Objects are drawn from the Princeton Shape Benchmark [13]],
and we scale each object down by a factor of 0.3 to make
them of comparable size with the hand, and graspable.

We generate both successful and unsuccessful grasps in a
two step process. First, we randomly sample qualified grasps,
which are defined to be a 6DOF pose such that the hand
does not collide with the object when the fingers are open,
but collides when the fingers are closed. This is a necessary
condition for a successful grasp. To do so, we first choose
a random hand orientation, and then choose a random hand
movement direction. Then we slide the hand across the object
along the sampled direction, while keeping orientation fixed.
At each sliding position, collision is checked to find qualified
grasps. Fig. 3] illustrates this process.

Next, we simulate each qualified grasp to label it as robust,
loose, or failed. The simulation treats the object as a free-
floating object without gravity. The closing of the hand is
simulated. After some specified time, if the object is still
moving, this means that it has been knocked away, and this
grasp is labeled failed. For the remaining grasps, we simulate
10 random hand shaking operations, by randomly moving the
x,y, z coordinates of the hand. If the object’s center of mass
leaves the hand during shaking, it is considered a loose grasp.
The remaining grasps are considered robust.

B. Synthesizing Depth Images

For each labeled grasp we synthesize a top-down depth
image of the object from a virtual camera. The field of view
(FOV) is chosen so that all parts of the object can be captured
by the camera. We augment the data by randomly orienting
the object, and transforming the grasp accordingly (Fig. f).

C. Data Generation Result

After several days of parallel simulation on a 64-core
machine, for 1814 objects in the Princeton Shape Benchmark,
we collected 442,769 robust grasps, 1,622,521 loose grasps,
and 21,271,561 failed grasps (all grasps are qualified). For data

3 2
I

N

</

,,),
e e

Q@ S
-

2
2
>

A\

Fig. 3. Qualified grasps (circled) are determined geometrically by sliding
the hand along a random direction.

. /{(}: ‘f{"

Fig. 4. Depth image synthesis. Top: camera FOV setting; bottom: depth
images at random orientation

augmentation, we synthesized 1,000 images for each object at
random orientations.

IV. LEARNING AND GRASP PREDICTION

Grasp prediction may seem to be a regression
problem at first, in which the problem is to predict
(z,y, z,roll, pitch,raw) grasp pose from a depth image.
However, we note that the regression is actually “multi-
valued”, in the sense that there are multiple correct output
values (grasp poses) corresponding to the same input value
(depth image). Therefore, a naive regression learner that
optimizes squared-loss will settle in the “average” of correct
outputs.

Fig. [3 illustrates this problem. Each point in the space,
consisting of a depth image value matched with a pose value,
represents a problem. Points in the colored region represents a
feasible grasp. As we can see, for some depth images (vertical
lines), there may be one connected component of feasible
grasps, multiple disconnected components, or no grasps at all.
Since we are only allowed to control the robot’s pose while the
image stays constant, regression methods may perform poorly.

Pose Pose
T e
-y iy

‘ Depth Image ‘ Depth Image

Fig. 5. Abstract illustration of the multi-valued problem space (left). We
propose learning a classification score and applying a gradient-based control
on the pose dimensions (right). The dashed yellow line indicates the given
depth image, which the robot cannot control. Starting from an initial pose,
we ascend the scoring function (red arrow).

Grasp_—"7

pose ——>

(6D) |

Convolutional
>

I::> Fully-connected
Stage

((INdIN0 UONNJOAUOD paualel)) O O @

i

Depth image

Fig. 6. The mix-in CNN architecture used for learning

Therefore, we propose an alternate formulation of this prob-
lem as a classification problem. Specifically, we train a CNN
to predict a grasp score from the depth image and robot pose.
Then, from a given depth image and initial suboptimal pose,
we can follow the gradient of the learned scoring function with
respect to pose to locally optimize the pose to a better pose.

A. Learning

To handle the multimodal input of the depth image and
robot pose we use a mix-in CNN architecture [15], illustrated
in Figure [§] The convolutional stage is composed of, in this
order, 50 5 x 5 kernels, 2 x 2 max-pooling, 50 5 x 5 kernels,
2 x 2 max-pooling, 50 4 x 4 kernels, 2 x 2 max-pooling, 50
2 x 2 kernels, and 2 x 2 max-pooling. The input to the fully-
connected stage is a vector of 1806 dimensions, and has two
hidden layers of 1000 and 100 neurons respectively, before a
softmax output layer. Label O represents failed grasps and 1
represents robust grasps.

In training, we use only robust and failed grasps, and
balance the labels (thus undersampling failed grasps). We use
only objects with 10 or more valid grasps. We further split
these objects into a 90%/10% train/test set, which we will call
them as “seen” objects and “unseen” objects. For seen objects,
we did a 90%/10% split on the 1000 synthesized depth image,
and use 900 images for training, and 100 for testing.

Table [I] shows the percentage of correct predictions on
seen objects. The percentage of correct predictions on unseen

Grasp Pose .
Object Pose Train 90% Test 10%
Train 90% 88.9% 88.7%
Test 10% 88.1% 88.1%
TABLE I

PERCENTAGE OF CORRECT PREDICTIONS FOR SEEN OBJECTS

objects is 83.3%. We found that for seen objects, the network
generalizes slightly better to new grasp poses, than to new
depth images.

B. Control

The control procedure finds a feasible grasp using the
learned model by optimizing a scoring function. Specifically,
the CNN’s softmax output layer involves computing the suc-
cess probability

et

Pr(y = 1) = 7@%0 gy ,

in which x = [z, 2]7 is output of the previous layer. During

control we want to maximize f(g) = z1(g,I), in which g is
the 6DOF grasp pose and I is the depth image data.

To illustrate the problem, we trained a neural network for
the following classification problem: given a 20 x 20 matrix of
zeroes I with some rectangular blobs of ones, and an (z,y)
location, return the corresponding value in the matrix. The
trained network achieves an error rate of less than 5%. We
found that local optimization of the score f(z,y) from an
initial position (z;,y;) terminates at a blob for almost all
starting points. Fig. [7] illustrates the trajectory and scoring
function.

For the grasping problem, we observed that since colliding
negative examples were omitted from training, high-scoring
grasps often intersect the object. To avoid collision, we add
an inverse barrier to the optimization. In theory, this would be
achieved by modifying the objective function to be

f(g) =z1(g,I) + 2

€ + distance(hand, object)’

in which « controls the height of the barrier and ¢ = 0. In
practice a positive value of € is needed to prevent numerical
instability when evaluating f(g) at a colliding pose, in which
case the barrier is infinite. While this does not forbid collision
in that zero or small negative distances are allowed, the penalty
is quite large. We set the values so that the penalty for a pose
with 0 distance will result in a penalty of about 500, compared
to common values of 2 to 4 for (g, I).

We also experimented with gradient descent and quasi-
Newton methods for optimization. We found that due to
different scaling of position (zx,y, z, on the order of +0.1m)
and orientation (roll,pitch,yaw, in the range of [0,2x7]),
the gradient with respect to the position is much greater in
magnitude than that with respect to orientation. Thus, gradient
descent spends most of its effort optimizing translation rather
than rotation. Quasi-Newton can successfully deal with this

00 25 50 75

10.0 125 15.0 17.5

17.5
12,5150

Fig. 7. Control on a toy problem, illustrating that CNNs can learn well-
behaved scoring functions from classification. Top: the control problem
overlayed with optimization trajectory. Bottom: scoring function is plotted
on the z axis.

&
38 3¢

Fig. 8. Example sequences for locally optimizing a failed grasp to a robust
grasp. After optimization, (top) the hand can successfully grasp the plane by
the tail; (middle) the hand moves closer to the Batman and grasps from the
side; (bottom) the hand changes to the opposite side of the dragon to better
grasp it.

B A
> ¥

<

=

&
X 1

problem but leads to trajectories that are less smooth. Fig. [§]
shows a successful optimization sequence on an unseen object.

For a more systematic testing, we generated 100 problems,
on unseen objects, from robust poses by pulling the hand
away from the object and perturbing the hand orientation. We
made sure that the resulting pose is qualified. Using BFGS
optimization (a form of quasi-Newton method) implemented
in SciPy, 93% of the grasps are robust under one shake, and
81% are robust under 10 shakes (the training definition of
robust grasp).

V. CONCLUSION AND FUTURE WORK

This paper presented a method for generating large amount
of grasping data from simulation, proposed an architecture to
learn to predict grasp quality based on gripper pose and depth
image, and showed how such a model can be used to do grasp
planning and control.

There are several directions for future work. First, our
previous work [15]] presented several extensions of the CNN
architecture for fusing grasp pose and depth image, and we
have not yet explored the performance of other architectures.

In addition, the roll-pitch-yaw representation may be prob-
lematic because it is not unique for a given rotation, and the
network does not explicitly learn the concept of equivalence.
Moreover, they are periodic with period of 27, and the network
does not learn the concept of “wrapping around”. In fact, we
only fed the network with values between 0 and 27, and thus
it may extrapolate (unreliably) to values outside of this range
during optimization. A different rotation representation, such
as quaternions, might improve performance.

Finally, although we are using the depth camera for object
sensing, we do assume that we know the complete model
during optimization (to calculate the distance function). This
can be hard to achieve, especially for novel objects. One
idea would be to train the network with obviously bad (or
non-qualifying) examples, that include explicit colliding poses
as negative examples. A preliminary investigation in this
direction shows that after this training, the highest scoring
poses tend to be those that do not collide with the object,
rather than marginally colliding. Therefore, we may even be
able to use the optimization without inverse-barrier penalty to
achieve “blind” model-free control.

REFERENCES

[1] Staffan Ekvall and Danica Kragic. Interactive grasp
learning based on human demonstration. In [EEE
International Conference on Robotics and Automation
(ICRA), volume 4, pages 3519-3524. 1IEEE, 2004.

[2] Corey Goldfeder, Matei Ciocarlie, Hao Dang, and Pe-
ter K Allen. The columbia grasp database. In IEEE
International Conference on Robotics and Automation
(ICRA), pages 1710-1716. IEEE, 2009.

[3] Corey Goldfeder, Matei Ciocarlie, Jaime Peretzman, Hao
Dang, and Peter K Allen. Data-driven grasping with par-
tial sensor data. In IEEE/RSJ International Conference

(4]

(5]

(6]

(7]

(8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

on Intelligent Robots and Systems (IROS), pages 1278—
1283. IEEE, 2009.

Kris Hauser. Robust contact generation for robot simu-
lation with unstructured meshes. In Robotics Research,
pages 357-373. Springer, 2016.

Yun Jiang, Stephen Moseson, and Ashutosh Saxena.
Efficient grasping from rgbd images: Learning using a
new rectangle representation. In [EEE International
Conference on Robotics and Automation (ICRA), pages
3304-3311. IEEE, 2011.

Ian Lenz, Honglak Lee, and Ashutosh Saxena. Deep
learning for detecting robotic grasps. The International
Journal of Robotics Research (IJRR), 34(4-5):705-724,
2015.

Sergey Levine, Peter Pastor, Alex Krizhevsky, and
Deirdre Quillen. Learning hand-eye coordination for
robotic grasping with deep learning and large-scale data
collection. arXiv preprint arXiv:1603.02199, 2016.
David G Lowe. Object recognition from local scale-
invariant features. In IEEE International Conference on
Computer Vision (ICCV), volume 2, pages 1150-1157.
IEEE, 1999.

Jeffrey Mabhler, Florian T Pokorny, Brian Hou, Melrose
Roderick, Michael Laskey, Mathieu Aubry, Kai Kohlhoff,
Torsten Kroger, James Kuffner, and Ken Goldberg. Dex-
Net 1.0: A cloud-based network of 3d objects for robust
grasp planning using a multi-armed bandit model with
correlated rewards. In IEEE International Conference
on Robotics and Automation (ICRA), pages 1957-1964.
IEEE, 2016.

Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael
Laskey, Richard Doan, Xinyu Liu, Juan Aparicio Ojea,
and Ken Goldberg. Dex-Net 2.0: Deep learning to plan
robust grasps with synthetic point clouds and analytic
grasp metrics. In Robotics: Science and Systems (RSS),
2017.

Andrew T Miller and Peter K Allen. Graspit! a ver-
satile simulator for robotic grasping. IEEE Robotics &
Automation Magazine, 11(4):110-122, 2004.

Ashutosh Saxena, Justin Driemeyer, and Andrew Y Ng.
Robotic grasping of novel objects using vision. The
International Journal of Robotics Research (IJRR), 27
(2):157-173, 2008.

Philip Shilane, Patrick Min, Michael Kazhdan, and
Thomas Funkhouser. The princeton shape benchmark.
In Shape Modeling Applications, pages 167-178. 1EEE,
2004.

Jaeyong Sung, Seok H Jin, and Ashutosh Saxena. Robo-
barista: Object part based transfer of manipulation tra-
jectories from crowd-sourcing in 3d pointclouds. In
International Symposium on Robotics Research (ISRR),
2015.

Yilun Zhou and Kris Hauser. Incorporating side-
channel information into convolutional neural networks
for robotic tasks. In IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2017.

	Introduction
	Related Work
	Simulation Data Generation
	Generating Grasps
	Synthesizing Depth Images
	Data Generation Result

	Learning and Grasp Prediction
	Learning
	Control

	Conclusion and Future Work

