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Recent large language models (LLMs) have shown indications of math deduction
abilities. However, it is unclear that for challenging math problems, what informa-
tion about the problem helps (or hurts). In this paper, we propose a challenging
benchmark dataset for such analyses. The Concept and Hint-Annotated Math
Problems, or CHAMP, consists of competition-level math problems annotated with
“concepts,” or general math facts, and “hints,” or problem-specific tricks. These
entities and their interconnections allow us to explore the effects of additional
information, such as relevant hints, misleading concepts, or related problems. We
conduct 12 preliminary studies with 4 models, summarize our findings and discuss
how CHAMP supports general discussions around LLMs’ capabilities to under-
stand and use contexts. The dataset, code and an extended version of the paper are
available on the project website at https://yujunmaol.github.io/CHAMP.

4 Problem Information
Problem Statement:
Find all integer solutions to the equation (n — 2)?
+(-1D2+n’+nm+1)?+n+2)? =m
Relevant Concepts and Hints:
H1. Stu h it
1
C1. (Square of sum and difference formula) (x
+y)2=x?+2xy+y?
C2. (Unnamed) A perfect square number can only
end in digit0, 1,4, 5,6 and 9.

Step-Wise Solution: (Not Shown Here)

Other Fields Omitted
( ) Y,

Prompt A: Problem Statement Only
U: Solve the following problem. Make sure to
show your work before giving the final
answer.
Find all integer solutions to the equation (n
=22+ (-1 +n*+ (n+1)*+ (n+2)?
2

=m?

A: (Model-generated response)

Prompt C: Active Concept Retrieval
U: Please explain the following concept: square
of sum and difference formula.

(Model-generated response)

c >

: Solve the following problem. Make sure to
show your work before giving the final
answer.

Find all integer solutions to the equation (n
-2+ m-D*+n?+(n+1D*+ (n+2)?
= 7711

Besides the concept above, you may also
find the following information useful:

2. A perfect square number can only end in

digit 0, 1,4, 5,6 and 9

Prompt D: Sample Problems and Solutions

U: First, study the following problems and their
solutions as they may contain helpful
information.

(Another problem P1 that uses C1)
(Solution step list for P1)
(Another problem P1 that uses C2)
(Solution step list for P2)

With what you have learned, solve the
following problem.

Find all integer solutions to the equation (n
-2+ -1 +n*+(n+1?*+ (n+2)?
=m?.

In addition, you may also find the following

information helpful:

Study th:

Q (Model-generated response)

Prompt B: Concept and Hint List
U: Solve the following problem. Make sure to
show your work before giving the final
answer.
Find all integer solutions to the equation (n
—22+ -1 +n*+(n+ 12+ (n+2)?

= 7711

You may find the following information useful:

Study tt sit
Stud ibili

2. (xty) =x*t2xy+y?
3. A perfect square number can only end in

digit 0, 1,4, 5,6 and 9

\\A: (Model-generated response)
Prompt E: Partial Solution
U: Solve the following problem. Make sure to
show your work before giving the final

answer.

Find all integer solutions to the equation (n
-22+m—-1)%?+n>+(n+1)?+(n+2)?

= ”12'

Below is a partial solution to the problem that

may be helpful:

1. Wehave (n—2)2+ (n—1)2+n?+ (n
+1)2+(n+2)2=5n2+10 = 5(n% +2),
which is divisible by 5.

2. Ifitis equal to a perfect square m"2, we
must have 5 | m.

A: (Model-generated response)

\_ /

A: (Model-generated response)
Figure 1: Upper left: an instance in our CHAMP dataset, consisting of a problem statement, relevant
concepts and hints, and full step-wise solution. Rest: five prompt templates that we use in the
experiment (instantiated into 12 different prompts). U and A refer to the User and Assistant roles.
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1 Introduction

Recent large language model (LLMs) have demonstrated superior performance in many tasks that
previously required specialized models or were thought to be out of reach of conventional neural
networks. One such capability is mathematical reasoning: LLMs can often solve simple math
problems and make reasonable attempts at challenging, competition-level problems. In addition to
model scaling [6], there are two key factors behind the progress: sophisticated prompting methods
such as chain-of-thought [7, 16], tree-of-thought [18] and self-consistency [15], which provide
useful heuristics for generating and selecting better reasoning paths, and allowing models to access
calculators or code interpreters, which offloads some of the symbolic computation to an external tool
[4, 20]. However, one direction remains less explored especially in the context of multi-step problems:
how do external pieces of knowledge and hints impact an LLMs’ multi-step reasoning abilities? This
is difficult to address with existing datasets which generally consist of problem statements and their
solutions, and do not provide annotated concepts or tricks that would be helpful for coming up with
the solution.

To enable such analyses, we manually craft the Concept and Hint-Annotated Math Problems
(CHAMP), a dataset of 270 problems handpicked from high school competitions and preparation
materials, covering five subject categories such as number theory and combinatorics. In addition to
problem statements and full solutions, we annotate each problem with two key pieces of information:
concepts and hints. The former are general math theorems or formulas, and the latter introduce
problem-specific tricks or strategies. The design of CHAMP enables previously under-explored
evaluations of multi-step reasoning abilities of LLMs: for example, how helpful are concepts and
hints overall? How should we provide such information, a direct presentation or a prompt for the
model to recall the content of a concept? Could the model infer useful information from studying
sample problems using the same concepts? What happens if the model is provided the wrong concept
or hint?

Using this dataset, we design 12 different prompts (Fig. 1), and evaluate OpenAI’s GPT-3.5 Turbo,
GPT-4 and GPT-4 Turbo models [13, 14] as well as Google’s Bard model, which is based on PaLM
2 [1]. While we observe a diverse range of behaviors across different models and prompts, the
accuracy of the best setting (besides explicitly providing partial solutions) is only 65.2%, showing
large potential for improvements with competition-level math for future LLMs and the utility of
CHAMP for developing and benchmarking future models.

2 Related Work

Math datasets and benchmarks. Large language models have seen significant improvement in
understanding and solving math problems, with GPT-4 [13] being able to tackle most math problems
that require grade-level knowledge and direct applications of formulas, even when the problems are
presented with a diversity of formats and wording [2]. Nonetheless, SOTA models still struggle with
competition-level math problems, such as those found in the MATH dataset [5].

While we also source competition-level problems for which applications of formulas are not straight-
forward, a key distinction of CHAMP, however, is the information associated with each problem.
Most datasets only include the problems and their solutions (given as equations or expressions [10],
full text solutions [2, 5] and/or code [12]), but we annotate the concepts and tricks applied to each
step of the solution for every problem, as well as the interconnections of problems via shared math
concepts. In this way, CHAMP enables fine-grained evaluations of mathematical problem solving
abilities of LLMs that are not possible with other datasets. In particular, the construction of CHAMP
enables prompting a problem with different additional information, encouraging dataset users to
evaluate a model’s behaviors under different contexts.

Reasoning with LLMs. Many techniques have been proposed to improve an LLM’s mathematical
reasoning abilities. Much work on this develops prompts to encourage generations of chain-of-thought
outputs [16] or selects a final result from multiple (stochastic) outputs [15]. Other approaches prompt
LLMs to use external tools such as calculators or Python programs [4] to eliminate arithmetic errors.

Influence of different prompts and contexts. Our dataset and experiments are similar in spirit
to works that explore how well LLMs understand different contexts, which have yielded surprising
findings. For example, models can be insensitive to label correctness [11] but sensitive to label



distribution [19] and exemplar ordering [8]. McKenzie et al. [9] find that larger LLMs resist absorbing
context information inconsistent with world knowledge acquired during training (e.g., redefining
m = 432). Similarly, Wu et al. [17] find that LLMs perform worse in atypical setups for common tasks
(e.g., integer addition but in base-9). With the CHAMP dataset, we can explore various behaviors of
LLMs and probe into the inner-workings of LLMs, which is still largely unknown.

3 Dataset

We now describe our dataset structure and content. Due to the high level of math expertise required
and the need for a unified format, the dataset curation is carried out exclusively by the paper authors.

Problems. Our problems are mainly sourced and adapted from the book Problem-Solving Strategies
by Engel [3], a classic material for high-school math competitions. We focus on problems that
require specific tricks or creative strategies, rather than routine knowledge applications. For ease
of performance evaluation, we require a final checkable answer for each problem, and are able to
transform some proof problems into this format (e.g., Prove f(x) > 1 for x > 0 — What is the
smallest value of f(x) for x > 0). Our problems span five categories: number theory, polynomial,
sequence, inequality, and combinatorics. App. C contains category-specific notes and considerations
during our curation.

For each problem, we manually verify and write the full step-wise solution in natural language, as the
solution manual often skip steps, and occasionally contain typographical errors. A final answer (the
short version of the full solution such as a short expression or value, or a simple yes/no depending on
the answer format) is also explicitly recorded.

Concepts and hints. The key component of our dataset is the annotation of problems with relevant
concepts and hints. Both of which provide helpful information to solve a problem. The distinction
between concepts and hints is that the former is about general math knowledge, such as an equation
or a theorem, for example, “z? — 42 = (x + y)(x — y)”, while the latter are problem-specific tricks
or strategies, such as “Add 2xy to 2 + y2” (to make a perfect square). For each problem, the full
solution is augmented with step-wise annotations of applied concepts and hints, with a full list of
concepts and hints reflecting the order of their application. Notice that duplicates are allowed on the
list since such information can be re-used in different parts of a solution.

Each concept is additionally annotated with three metadata fields; the category, such as “number
theory” or “polynomial”, the name, such as “difference of squares formula” for the concept 22 —y? =
(z + y)(x — y); and the parent concept, which is a general form of the concept. For example, both
(r +y)? = 2% + 22y + y? and (2 + y)® = 2® + 32y + 3zy? + y* have the parent concept of the
binomial theorem, which states (z + y)™ = >_)'_, (Z)x(”*k)yk . While every concept is assigned a

category, not all concepts have a name or a parent concept.

A main feature of our dataset problems is the lack of a clear line of attack from the beginning. Instead,
there are many plausible approaches, leading to different subsequent choices and resulting in a tree of
paths to take, with only one (or few) successful ones in the end. Thus, concepts and hints can serve
as “branch indicators” that when understood correctly, should guide the model onto the successful
path. For the current LLMs, which are largely based on next-token generation algorithms, good
comprehension of messages delivered by branch indicators should increase model performance.

Dataset statistics. Overall, we collect 270 problems, 54 concepts and 330 hints across five cate-
gories — number theory: 80, polynomial: 50, sequence: 50, inequalities: 50, combinatorics: 40. Since
the problems are non-routine, competition-level problems, all the problems require at least 1 concept
or hint to solve, with an average of 1.4 concepts and 1.7 hints applied per problem. In addition, each
problem has on average 6.0 solution steps, further demonstrating the difficult nature of our dataset.
As a MWP dataset, each problem statement has an average of 20.2 words, with an average solution
step of 10.9 words. Fig. 2 of App. A plots the distribution of these statistics.



4 Experiment

4.1 Setup

We evaluate GPT-3.5 Turbo (16k context version), GPT-4, GPT-4 Turbo and Bard. For GPT models,
we set the temperature to 0 and the maximum number of tokens to generate to 3,000, which is
more than enough to output the correct reasoning, and treat any unfinished generation as incorrect.
Following mainstream practices, we ask the model to show the work first, before generating the final
answer. However, to facilitate answer grading, we additionally ask the model to summarize its answer
in a new round of conversation with “Now, summarize the answer above in one sentence, without any
intermediate steps or explanations.”

Answer grading. In our experiment, we focus only on the correctness of the final answer (e.g.,
“yes”, “x = 17, “no solution”, etc.) while leaving the analyses of intermediate derivations to future

LLINTS

work. Nonetheless, the same answer can be expressed in multiple ways, such as “no solution”, “none”,
“unsolvable”, “impossible to solve”, etc., making simple criteria-based exact or sub-string match to a
manually constructed set of valid answers [2, 5] prone to false negatives. Thus, we propose to use
GPT-4 as an automated grader, with the prompt shown in Tab. 2 in App. B. To validate this approach,
700 answers were graded by both humans (paper authors) and GPT-4. Around 2% answers receive
different judgments, evenly split between human errors and GPT-4 errors. This result establish a 99%

accuracy of GPT-4 grading, on par with human accuracy, justifying its use in experiments.

Majority guess baseline. Sometimes models can output correct final answers with incorrect
reasoning, especially when those final answers appear a lot in the pre-training corpus. To contextualize
a model’s final answer accuracy, we construct the majority guess baseline as follows. For each of the
four answer types in our dataset — numeric answers (e.g., 0), expression answers (e.g., n), yes/no
answers (e.g., no) and enumeration answers (e.g., none) — the baseline guesses the answer values
that appear most frequently in the dataset for each answer type. Thus, LLMs exhibiting good math
deduction abilities should perform above this baseline. The baseline accuracy is calculated to be
33.0% with details shown in Tab. 5 of App. D.

4.2 Prompts

To demonstrate the wide range of applications of our dataset, we develop 12 different prompts
to evaluate models. The first prompt provides only the problem statement, which serves as a
model accuracy baseline. The other 11 prompts, on the other hand, add various types of additional
information and/or instructions to use such information, as listed below:

1. Providing no additional information beside the problem statement (Fig. 1, Prompt A).

2-7. Providing relevant concepts and/or hints in six ways: ordered relevant concepts and hints,
unordered relevant concepts and hints, concepts only, hints only, relevant concepts and hints
but with the former replaced by their most general version (up the parent-child link), and
relevant hints but misleading (i.e., other) concepts from the same category (Fig. 1, Prompt B).

8-9. Asking the model to retrieve concept-related information in two ways: 1. recall the content
of a concept by its name (while providing the content of unnamed ones directly); 2. give an
example to apply the concept. In both cases, another round of conversation provides a list of
useful hints. (Fig. 1, Prompt C).

10. Providing sample problems using the same concepts along with their solutions, rather than
providing the concepts directly (Fig. 1, Prompt D).
11-12. Providing 33.3% and 66.7% ground truth solution steps (Fig. 1, Prompt E).

For all prompting, the same system prompt of “You are an expert on mathematics.” is used. For the
Bard model, which does not support system prompt customization, we prepend the system prompt to
the beginning of the first user prompt.

4.3 Results

Model performance on various prompts are summarized in Tab. 1. Due to limited API access, only
three prompts are tested on Bard. We have several findings. First, GPT-4 and GPT-4 Turbo outperform
the majority guess baseline by a large margin, while GPT-3.5 Turbo and Bard struggle. The evolution
of performance among GPT models is also evident. Nonetheless, the best performance (besides
explicitly providing partial solutions) is 65.2%, which is achieved by GPT-4 Turbo with an ordered



Model Problem Concept and Hint (C+H) List Concept Retrieval | Sample | Partial Solution
Only | Ordered Random | COnly HOnly | RootC Mislead C | Name Example | Problem | 33.3% 66.7%
GPT-35T 28.9 333 344 28.9 333 34.1 315 322 31.1 35.6 33.0 404
GPT-4 422 53.0 50.0 43.0 515 49.6 48.9 50.0 515 50.4 54.1 65.6
GPT-4T 58.1 652 60.0 57.8 61.9 63.7 56.3 62.6 63.3 64.1 60.7 64.8
Bard 285 333 30.0 - - - - - -

Majority Guess Baseline: 33.0

Table 1: Final answer accuracy (in percentage) with different prompt settings. The majority guess
baseline and all prompts are discussed in Sec. 4.1. “T” in model name refers to Turbo. Bard is only
evaluated on a few settings due to limited access.

list of concepts and hints, showing ample room for improvements, demonstrating CHAMP’s potential
in benchmarking future models.

In addition, in all cases, the effects of providing the concepts alone (C Only) is minimal, most likely
because they are general math knowledge that have been encountered many times during models’
pre-training. Indeed, as Fig. 3 of App. E shows, the model can automatically recall and use relevant
concepts even without being instructed. By comparison, providing hints are more helpful since they
are created during dataset construction and less likely to be encountered during pre-training, thus
increasing the difficulty of problems when not given. It is worth noting that while the models are
able to comprehend hints to get to the correct solution path, they are useful only to an extent, with
examples showing wrong deductions following correct applications of hints in Fig. 4 of App. E.

Compared to its predecessors, GPT-4 Turbo is notably aligned with human expectation in that it
suffers the most from misleading prompts. This shows that the model is good at absorbing new
information, even wrong ones, to the point that it makes incorrect reasoning to justify its usage, as
shown in Fig. 5 of App. E. Furthermore, we also notice an intriguing behavior of self-correction
with GPT-4 Turbo, where the model can identify its mistakes along the way and re-route to a correct
path, as shown in Fig. 6 of App. E. Even though GPT-4 Turbo shows the best overall performance,
revealing partial solutions helps it the least: while providing partial solutions helps increase all model
performance, there is only a 11.5% relative increase from seeing no solution at all to seeing 66.7%
of the solutions for GPT-4 Turbo. At the same time, GPT-3.5 Turbo and GPT-4 achieve relative
increases of 39.8% and 55.5%, respectively.

Last, we acknowledge limitations in our use of final answer accuracy as the metric for model
evaluation. As Fig. 7 of App. E shows, the model could use incorrect reasoning to achieve the correct
final answer, making final answer accuracy a somewhat inflated measurement of the model’s true
reasoning ability. While this is the predominant practice for most benchmarks [e.g. 2, 5], we leave
further exploration and assessment of this issue to future work.

5 Discussion

In this paper, we present a novel dataset, Concept and Hint-Annotated Math Problems (CHAMP),
consisting of challenging high school competition-level problems on which current large language
models struggle. For each problem, we annotate the necessary concepts, tricks and strategies. The
interconnections among those entities allow fine-grained analyses of LLMs’ performance under
different context.

The application of the dataset is demonstrated by experiments with 12 prompt designs on four
different models. We find that both GPT-4 and GPT-4 Turbo exhibit above-random math problem
solving behaviors, with a good level of capability to incorporate useful information, especially hints,
to improve model performance. The GPT series of models show clear evolution of performance, with
GPT-4 Turbo most aligned with human expectations.

Overall, the unique construction and detailed annotations of CHAMP allow users to explore new
prompts beyond the 12 examples presented in this paper. For example, users can develop new
prompt designs with information of the step-wise annotations of concepts and hints in the solutions.
Besides, future efforts could include model fine-tuning with CHAMP, as well as more systematic
qualitative analyses on model outputs. With the latest model of GPT-4 Turbo showing a large room
for improvements, we expect CHAMP to be a valuable resource for the AI community to develop
and benchmark new models in the future.
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A Dataset Statistics Visualization

Fig. 2 shows the distributions of various key statistics of the dataset.
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Figure 2: Distributions of key statistics of the dataset.

B GPT-4 Grader Prompt

Tab. 2 shows the grading prompt that we use. We find that GPT-4 is excellent at following the
instruction and only outputting one of “correct,” “incorrect” and “partially correct,” with the last
judgment common for answers with missed solution or incomplete case discussion. For the purpose

of accuracy evaluation, we treat “partially correct” as “incorrect.”

Role | Message

System | You are a math teacher and need to grade student’s homework. For each question,
you need to determine the correctness of the answer, given the reference answer.
You only need to judge the correctness of the final answer, and should not consider
any reasoning or explanations given in the answer. Note that if the student gives an
obviously equivalent solution to the reference answer (e.g., 1.5 vs 3/2 or a® — b2 vs
(a+Db)(a—Db)), the answer should be judged as correct. Your decision should be one of
“Correct”, “Incorrect” or “Partially correct”. There is no need to explain your decision.

User | The question is:

(Problem statement)

The reference answer is:

(Ground truth final answer)

The student answer is:

(Model-generated and summarized final answer)
Is the student answer correct, incorrect, or partially correct?

Assistant | (Grading judgment output)

Table 2: The prompt setup used for automated grading by GPT-4.



C Problem Collection and Annotation Considerations

C.1 Number Theory

A notable feature of number theory problems is that most of them are given in the form of proof
problems. We manage to convert most of them into problems asking for an answer, with examples
listed in Tab. 3. In addition, there are some questions which require non-trivial factorization. Since
GPT is often bad at arithmetics above 100, we provide them directly as hints, such as 1971 = 27 x 73.

Before After

Prove that n +4™ can never be a prime number ~ For how many integers n in {1,2,...,99} is n* 4+ 4" a
for integer n > 1. prime number? (Answer: 1)

Prove that 22 442 + 22 = 2zyz has no positive  Find all positive integer solutions to the equation 22 +
integer solutions. y? + 22 = 2zyz. (Answer: None)

Prove that 323 | 20" + 16™ — 3™ — 1 foreven = What are possible values of 20" + 16" — 3" —
n. 1 mod 323 for even n? (Answer: 0)

Table 3: Conversion of number theory proof problems into those requiring answers.

C.2 Polynomial

Some polynomial problems require factorization or root finding involves nontrivial arithmetics, similar
to number theory problems. To reduce errors in this process, we provide the relevant arithmetic
calculation as hints, such as 264 = 6 x 44 when factoring v? — 50v + 264 = (v — 6)(v — 44).

In addition, there are several polynomial division and remainder problems, for which we provide the
concrete definition as a concept (although all models could easily retrieve and explain this definition
with a straightforward query of “What is polynomial division and remainder?”):

When a polynomial f(z) is divided by a polynomial g(z), the quotient ¢(x) and
the remainder 7(z) are polynomials such that f(x) = g(z)g(x) + r(x) and the
remainder r(z) has degree less than that of g(z).

C.3 Sequence

A common type of problems in sequence is to find its limit. However, a prerequisite is to prove
that the limit exists. Thus, we frame such questions explicitly, using wording such as “Determine if
the limit exists, and if so, find its value.” We also annotate these questions with concept stating the
theorem that establish the existence of the limit, most commonly the monotone convergence theorem:

A sequence that is monotonic and bounded has a limit. Specifically, a sequence that
is monotonically increasing and bounded from above, or monotonically decreasing
and bounded from below, has a limit.

In addition, a common strategy is induction, which shows that a property holds for all a,, by showing
that it holds for a, if it holds for all of aq,...,a,_1. Because the instantiation of the strategy,
especially the property to show, is problem-specific, we provide it as a hint, rather than a concept.

C.4 Inequality

Just like with the category of number theory problems, many problems in inequality are written as
proofs of inequality identity. We manage to convert them into questions requiring numerical answers
with approaches such as asking for the extremum (i.e., maximum or minimum depending on the
original inequality) value (while making sure that the value can indeed be attained by some variable
value assignment). Some sample conversions are listed in Tab. 4.

C.5 Combinatorics

Most combinatorics problems are verbal, since they often describe a real-world scenario. When
applicable, we try to provide the problem with the unmentioned commonsense knowledge (e.g., “On
a chess board, two rooks are placed peacefully if they are not on the same row or column.”) before



Before After

Prove that, for a,b,c > 0, vabc < For positive a,b,c, what is the smallest value of

(ab+ bc+ ca)/3? Vab + be + ac/V/abc? (Answer: \/3)
If n > 1, proof that 1/(n+1)+1/(n+2)...+ For how many values of n in {101, ..., 1000} is 1/(n+
1/(2n) > 1/2. 1)+1/(n+2)+...4+1/(2n) > 1/2? (Answer: 900)

The product of three positive reals is 1. Their The product of three positive real numbers is 1, and
sum is greater than the sum of their reciprocals. their sum is greater than the sum of their reciprocals.
Prove that exactly one of these numbers is > 1. How many of them can be greater than 1? (Answer: 1)

Table 4: Conversion of inequality proof problems into those requiring answers.

the actual problem (e.g., “For an n X n chess board, find the number of ways that n rooks can be
placed peacefully (i.e., any two are placed peacefully).”).

In addition, many combinatorics problems ask for the number of ways in a setup of size n (e.g., the
number of ways that n horses can finish in a race with the possibility of ties), and it is solved in the
following manner:

1. Find a recurrence relationship to express P(n) in terms of P(n — 1) and P(n — 2) (and
possibly more terms), where P(n) is the quantity asked in the question.
2. Find the initial values P(1), P(2) (and possibly more terms).
3. Set up a characteristic equation (which is a polynomial) and find its root.
4. Use the roots to express P(n) as a function of n.
The key difficulty is the root-finding part, so instead of asking for the general expression of P(n) in
terms of n, we ask for a specific value, such as P(7), which could be worked out instead by repeatedly

applying the recurrence relationship from the initial values. We also make sure that the asked P(n)
value is relatively small, usually less than 200, to minimize the chance of arithmetic errors.

D Majority Guess Baseline Construction

Tab. 5 presents a breakdown of problems by the types of answer format and the corresponding
baseline answer based on the majority ground truth answer of each answer format.

Answer Format # Problems  Example Baseline Answer
Numeric 162 (60.0%) Let n be 22...22, with a total of 1980 digits. What is 0
n mod 19827
Expression 45(16.7%)  In how many ways can you take an odd number of objects Sum of all vari-
from n (distinct) objects? ables (e.g., n + k)
Yes/No 42 (15.6%)  1Is 4°%° + 545% a prime number? No
Enumeration 21 (7.8%) Find all integer solutions to the equation 23 + 22y +2y%>+ None

y? =82 + a2y +y° +1).

Table 5: The construction of baseline answers based on four answer formats.

E Illustrative Examples of Various Reasoning Characteristics

Fig. 3-7 shows various model behaviors, with explanations given in the respective caption and relevant
pieces color-highlighted.



Problem: For positive numbers a, b, ¢, what is the smallest value of (a + b)(b + ¢)(a + ¢)/(abc)?

GPT-4 Solution (Problem Only Prompt):

To solve this problem, we can use the AM-GM inequality (Arithmetic Mean-Geometric Mean
Inequality), which states that the arithmetic mean of a set of non-negative numbers is always
greater than or equal to the geometric mean of the same set.

Let's apply this inequality to the given problem:

We have three terms: a + b, b + c,and a + c.

The arithmetic mean of these terms is:

((a+b)+ (b+c)+ (a+¢))/3=2a + 2b + 2¢)/3=2(a + b + ¢)/3
(omitted text)

So, the smallest value of (a + b)(b + c)(a + c)/(abc) is achieved whena = b = c,anditis
equal to 8.

Figure 3: An instance where the model correctly applies a concept spontaneously (green), without
being told.

Problem: A function f(x) satisfies f (x + 1) + f(x — 1) = V2f(x). Determine whether the
function is periodic, and if so, find its period.

Concept and Hint:
1. (Hint) Let f(x — 1) = a and f(x) = b, and study expressions for f(x + 2), f(x + 3), ....

GPT-3.5 Solution (Ordered Concept and Hint List Prompt):
To determine whether the function is periodic, we need to find a pattern in the values of f(x) as
x increases.

Let's start by substituting f(x — 1) = aand f(x) = b into the given equation:
fr+D) + flx=1) = V2f(x)

Substituting the values, we get:

fx+1D+a=+V2b

Now, let's substitute f(x + 1) = cand f(x) = b:

c+a=+2b

Rearranging the equation, we have:

c=vV2b-a

Now, let's substitute f(x +2) = dand f(x +1) = c:
d+c=+2c¢

(omitted text and wrong final answer)

Figure 4: An instance where the model knows to follow the provided hint (green) but proceeds with
an incorrect derivation (red).
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Problem: What is the smallest value of a/(b + ¢) + b/(a + ¢) + c/(a + b) for positive numbers
a,b,c?

Concepts and Hints:
1. (Relevant Hint) Add 1 to each term in the sum to make the numerator the same and factorize it.
2. (Misleading Concept) For positive x, x + 1/x > 2, with equality if and only if x = 1.

GPT-4-Turbo Solution (Misleading Concept Prompt):
Let's follow the hints provided and solve the problem step by step.
We are given the expression:
a b c
b+c a+c a+b
According to the first hint, we add 1 to each term:

a b c
(—+1)+ —+1 +(—+1)
b+c a+c a+b
Now, we can rewrite each term to have the same numerator as the corresponding denominator:
a+b+c a+b+c a+b+c
b+c a+c a+b
We can factor out the commonterma + b + c:
(@a+b+c) 1
@ ¢ b+c a+c a+b
Now, let's use the second hint. For positive x, we know that x + 1/x > 2, with equality if and only
if x = 1. We can apply this inequality to each term in the parentheses:
1 2 1 2 1 2
>, >, >
b+c a+b+ca+c a+b+ca+b a+b+c
Adding these inequalities together, we get:

(omitted text and wrong final answer)

Figure 5: An instance where the model falls victim to a misleading concept (orange) and proceeds
with an incorrect derivation (red).

Problem: Find all possible positive integer values of x such that x, x + 10 and x + 14 are all prime
numbers.

GPT-4-Turbo Solution (Concept Application prompt):

To solve this problem, we need to find all positive integer values of x such that x, x + 10, and x +
14 are all prime numbers. We will use the concept of modular arithmetic to help us narrow down
the possibilities.

First, let's consider the three expressions modulo 3. We know that any integer n is congruent to 0,
1, or 2 modulo 3. That is, n mod 3 is either 0, 1, or 2.

If x mod 3 = 0, then x is divisible by 3 and cannot be prime unless x = 3. However, ifx = 3,
then x + 10 = 13 (which is prime) but x + 14 = 17 is not prime, sox = 3 is not a solution.

(omitted text)
However, we made a mistake in our initial analysis. Let's correct it:

Ifx = 3,thenx + 10 = 13 and x + 14 = 17, which are both prime. So x = 3 isindeed a
solution.

(omitted text)

Therefore, the only solution is x = 3, where all three numbers x, x + 10, and x + 14 are prime.
There are no other positive integer values of x that satisfy the given conditions.

Figure 6: An instance where the model makes a mistake (red) but corrects it later (green).
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Problem: For how many integers nin {1, 2, ...,99} is n*+4"a prime number?

GPT-4 Solution (Problem Only Prompt):

To solve this problem, we need to check each integer n in the set {1, 2, ..., 99} to see if n*+ 4%is
a prime number. A prime number is a number that has exactly two distinct positive divisors: 1 and
itself.

Let's start with the first few numbers:

1.Forn = 1,n*+ 4"=1*+4'=1+ 4 =
2.Forn = 2,n*+ 4" = 2%+ 42 = 16 + 16
3.Forn = 3,n*+ 4" = 3* + 43 = 81 + 64 = 145, which is not a prime number.

4.Forn = 4,n*+ 4" = 4* + 4* = 256 + 256 = 512, which is not a prime number.

We can see a pattern here. Forn > 1, n* + 4" is even (since both n* and 4™ are even), and the
only even prime number is 2. Therefore, forn > 1,n* + 4™ cannot be a prime number.

5, which is a prime number.
= 32, which is not a prime number.

So, the only integer n in the set {1, 2, ..., 99} for which n* 4+ 4™ isaprime numberisn = 1.
Therefore, there is only 1 such integer.

Figure 7: An instance of a correct answer from an incorrect reasoning (red).
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