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ABSTRACT
We envision a world in which robots serve as capable partners in heterogeneous teams composed
of other robots or humans. A crucial step towards such a world is enabling robots to learn to use
the same representations as their partners; with a shared representation scheme, information may
be passed among teammates. We define the problem of learning a fixed partner’s representation
scheme as that of latent space alignment and propose metrics for evaluating the quality of align-
ment. While techniques from prior art in other fields may be applied to the latent space alignment
problem, they often require interaction with partners during training time or large amounts of
training data. We developed a technique, Adversarially Guided Self-Play (ASP), that trains agents
to solve the latent space alignment problem with little training data and no access to their pre-
trained partners. Simulation results confirmed that, despite using less training data, agents trained
by ASP aligned better with other agents than agents trained by other techniques. Subsequent
human-participant studies involving hundreds of Amazon Mechanical Turk workers showed how
laypeople understood our machines enough to perform well on team tasks and anticipate their
machine partner’s successes or failures.

1. Introduction

A longstanding vision in the AI community is a world in
which agents seamlessly integrate into teams populated by
humans or other machines. Such teams could outperform
the more homogeneous teams that exist today by leveraging
the relative strengths of different teammates. Human intu-
ition and insight could build upon the patterns unearthed
by machines, or swarms of aerial and pedestrian robots
could cover vast areas in search and rescue missions.

In order to create such teams, in addition to creating
individually capable agents, we must create mechanisms for
effective robot collaboration. Already, we have seen signifi-
cant progress in this direction (Hiatt et al., 2017). For
example, cross-training techniques, in which robots and
humans alternate roles in a team when learning how to per-
form a task, enable team members to form similar mental
models (Nikolaidis & Shah, 2013). Other techniques produce
agents that promote team fluency, enable humans to antici-
pate failures, or overcome individual team members’ blind
spots through handoffs of responsibility (Huang et al., 2019;
Iqbal et al., 2015; Ramakrishnan et al., 2020). Each of these
works demonstrates the importance of robots being good
teammates rather than merely effective individual agents.

Many of the above works achieve their successes by
decomposing the problem of collaboration into two subpro-
blems: learning a model of teammates and then acting opti-
mally with respect to the learned model. One consequence

of this decomposition is that it allows new agents to act
according to any policy as long as the policy results in team-
mates reacting appropriately. This conclusion ignores find-
ings from studying effective human teams that are
characterized by individual team members adopting their
teammates’ ways of thinking (Mathieu et al., 2005). Shared
thinking and mental alignment allows teammates to predict
each others’ actions but also, more fundamentally, the
internal representations that different team members use are
also similar. We claim that this alignment, on the level of
representations rather than actions, is a critical part of
building good robotic teammates. Indeed, prior work dem-
onstrates the benefits of shared mental models within
human-robot teams (Breazeal et al., 2009; Hiatt et al., 2017;
Nikolaidis & Shah, 2013), but such work remains limited to
explicitly designed models, rather than model-free
approaches like neural nets.

In this work, we identify latent space alignment as the
neural net equivalent of the shared mental model problem
and an important property of effective teams. Intuitively,
latent space alignment is the extent to which different team-
mates “think” about inputs (i.e., generate representations in
their latent spaces) in similar ways. A more formal defin-
ition of the latent space alignment problem formulation, as
well as metrics for measuring alignment, is presented in
Section 2.

The latent space alignment problem is both important
and difficult to solve, as illustrated in the following example.
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Consider a firefighter arriving at a burning building and
asking a local expert for information. First, the firefighter
asks about a specific location: “Where is the entrance to the
building?” The expert replies by drawing a sketch of the
building floorplan on a napkin and marking an “X” to
denote the entrance. The firefighter then asks “How can I
get to the conference rooms (where there are people) while
avoiding the kitchen (where the fire is burning)?” The resi-
dent responds by drawing a line on the napkin, representing
a path through the desired rooms.

While this example appears simple, it illustrates how
humans often employ different representation schemes to
convey different types of information. In this example, the
“X” and line on the floorplan are representations for a loca-
tion and a path. For these representations to be useful, the
expert and firefighter had to solve two problems. First, they
had to ascribe similar meanings to the same representations.
For example, both had to agree upon the orientation of the
map (e.g., north is up), or that the “X” marked the location
of the entrance and not, say, a point 100 yards left of the
entrance. Second, the chosen representation scheme had to
enable high task-specific performance. When denoting a sin-
gle point for the entrance, using a single “X” was a sufficient
and compact representation; just a single “X,” however,
would likely be a poor choice of representation for depicting
a path through the building.

If robots are to assist in search-and-rescue missions, one
could imagine that they should similarly use representations
that their human partners understand. While we did not
assess robots in search-and-rescue missions, we found

benefits to using point- and path-based representations
when assessing human-robot partnership in the context of
close-proximity assembly tasks.

Another, more intuitive, example of latent space align-
ment is depicted in Figure 1. The top row demonstrates
how different agents (e.g., humans or pre-trained models)
may represent data in different ways. In this case, the 2D
dots are encodings of images from the MNIST digit dataset
– images of hand-written digits. In the leftmost diagram, a
variational autoencoder (VAE) created clusters of encodings
by digit; humans might similarly create clusters by digit
(middle) or parity (right). The bottom row of Figure 1
shows the latent spaces learned by agents trained by a tech-
nique we developed to align with the latent spaces in the
top row. Because different agents may use different repre-
sentation formats, or the same agent may use different rep-
resentations for different tasks (e.g., clustering by parity vs.
digit depending upon what one cares about), it is important
that techniques for solving the latent space alignment prob-
lem work for many different latent spaces.

In this article, we focus on techniques that enable agents
to align their latent spaces with their partner’s. Prior art in
interpretability research suggests ways in which agents may
align with human intuition, but such techniques are limited
to enabling good human-machine partnerships instead of
also supporting machine-machine partnerships (Li et al.,
2018). Recent techniques developed in social convention lit-
erature supports the flexibility of partnering with arbitrary
autonomous agents but was not evaluated in the context of
human partners (Lerer & Peysakhovich, 2018). We extended

Figure 1. (a) When encoding images of hand-written digits, a standard VAE with a 2 D latent space creates clusters by digit. More intuitive designs may create other
patterns of clusters by digit (b) or parity (c), depending upon the task. In all cases, we trained agents to align with their partners (d–f). (a) Pre-trained VAE. (b)
Human-intuitive clusters by digit. (c) Human-intuitive clusters by parity. (d) Aligned with (a). (e) Aligned with (b). (f) Aligned with (c).
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social convention work and developed a new technique,
Adversarially Guided Self-Play (ASP), that enabled efficient
latent space alignment with human or machine partners.
The bottom row of Figure 1 shows the latent spaces learned
by agents trained using ASP to align with partners’ latent
space, represented in the top row; despite using as few as 8
examples of images and representations from their partners,
our agents aligned their 2D latent spaces with their part-
ners’. Experiments in which our agents partnered with other
machines or with humans demonstrated that our technique
produced better-aligned agents than the state of the art.

Our contributions are thus three-fold. First, we defined
the problem of latent space alignment and proposed two
metrics for measuring alignment. Second, we designed and
implemented a new technique, ASP, for efficiently solving
the latent space alignment problem. Third, we demonstrated
the benefit of ASP compared to existing techniques, as
measured in a series of experiments in which agents part-
nered with other machines or humans.

2. Latent space alignment problem

Here, we define the latent space alignment problem as a
learning problem that encourages commonality of represen-
tation functions among agents on a team. First, we intro-
duce a set of assumptions about team membership that
simplify the problem definition. Second, we create a seman-
tic measure of latent space alignment that computes the
average similarity between representations that different
agents generate for the same input. The latent space align-
ment problem is defined a finding parameters of an agent
that minimizes this semantic measure. Finally, given that the
semantic measure is not computable in all settings, we
define an additional metric—pragmatic alignment—that may
be calculated more broadly and correlates closely with
semantic alignment.

2.1. Problem scope

As motivated in the introduction, we wish to create agents
that operate well in teams comprising heterogeneous agents
by training new agents to use the same representation
scheme as their teammates. For the sake of simplicity, we
limit our attention to two-member teams, meaning that a
new agent must partner well with a single other agent.
(Generalizing to larger teams is feasible, and related research
has found regularizing effects in training with many part-
ners, but these larger group dynamics are outside the scope
of this work (Hernandez-Leal et al., 2019).) We limit our
attention to classification tasks with an intermediate repre-
sentation generated during computation. Concretely, this
means that each of the two partners in a team employs at
least two functions: an encoder, e, that maps input x to an
encoding z (e : RX ! RZ) and a classifier, c, that maps an
encoding z to a probability distribution over Y mutually
exclusive categories. The classification of an input by an
agent is calculated as the argmax of the composition of these
two functions: ŷ ¼ argmaxðcðeðxÞÞÞ:

For two-member teams, the problem of latent space align-
ment corresponds to the notion of encodings produced by
each agent being similar in some way. Recall that in our moti-
vating example of a firefighter and a local expert communicat-
ing via a map about a burning building, it was important for
them to understand the map in the same way: if they disagreed
about which direction corresponded to north, the map would
be useless. Analogously, our agents must create representations
from inputs, and both team members must do so similarly.
We define this notion more rigorously in the next section.

2.2. Semantic measure of latent space alignment

We first construct a semantic measure of latent space align-
ment that measures the distance, on average, between
encodings of the same input by two different agents. We
borrow the word “semantic” from linguistics literature that
defines semantics as “literal, decontectualized meaning”
(Frawley, 2013). Thus, if encodings are thought of as the
“meanings” of inputs, a semantic measure of latent space
alignment should reflect how close the outputs of two
agents’ encodings functions are.

Mathematically, we define a function aSðA,B,XÞ that,
given two agents A and B and a dataset of inputs X, returns
the real-valued semantic latent space alignment of the two
agents. The formulas for calculating aSðA,B,XÞ are written
below, with eA and eB denoting the encoding functions of
agents A and B, respectively.

aSðA,B,XÞ ¼ � 1
ZjXj

X
x2X

ðeAðxÞ � eBðxÞÞ2 (1)

Z ¼ 1

jXj2
X

i2 1, :::, jXj½ �

X
j2 1, :::, jXj½ �

ðeAðxiÞ � eBðxjÞÞ2 (2)

Equation (1) calculates the semantic alignment of agents A
and B by measuring the negative of the mean squared error
(MSE) of the encodings generated by the encoding functions
of the agents. A factor of 1

Z , with Z defined in Equation (2),
is included to normalize the alignment quantity by the MSE
of encodings from all pairs of inputs, thus cancelling out the
penalty agents with large numerical values for encodings
would otherwise face. Together, these two equations measure
how far apart the encodings generated by different agents are
for the same input, compared to the average distance for ran-
domly chosen inputs. We set aS as the negative of the (nor-
malized) MSE in order to have lower scores correspond to
worse-aligned agents, with a maximum possible value of 0 if
the two encoding functions are identical.

Given this definition of semantic alignment, we formalize
the latent space alignment problem as the learning problem
that follows:

A� ¼ argmax
A2A

aSðA,B,XÞ (3)

In other words, solving the latent space alignment prob-
lem produces the optimal agent (A�) from a class of possible
agents (A, e.g., a set of neural nets of a given architecture)
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that maximizes the semantic alignment for a fixed partner
(B) and dataset (X).

Although we have formalized the latent space alignment
problem as a minimization problem, in some settings, one
cannot directly compute the value being minimized.
Crucially, the semantic measure of alignment requires access
to numerical values of encodings, which may not always be
possible. For example, when assessing the latent space align-
ment between an agent and a human, it is not obvious how
one would convert a human’s encoding of an input into the
form required by as. Thus, our semantic measure of latent
space alignment provides a formal definition of the latent
space alignment problem and is useful when applicable, but
only applicable in some situations.

2.3. Pragmatic measure of latent space alignment

To complement the effective but limited semantic measure
of latent space alignment, we introduced a pragmatic metric
that, while not directly measuring distances in the latent
space, is more broadly applicable. Within linguistics, prag-
matics “involves the selection of the contextually relevant
meaning, not the determination of what counts as the mean-
ing itself” (Frawley, 2013). Thus, rather than compare
encodings (loosely equivalent to meaning), we measured the
effect of encodings in the context of classification tasks. We
did so by measuring task performance when one agent’s
encoder and the other agent’s classifier were composed, as
shown in Equation (4).

aPðA,B,X,YÞ ¼ 1
2jXj

X
ðx, yÞ2ðX,YÞ

1y¼caðebðxÞÞ þ 1y¼cbðeaðxÞÞ½ � (4)

Given the above equation, the pragmatic alignment of
agents A and B using a dataset of paired inputs and outputs,
(X, Y), aPðA,B,X,YÞ, is the mean classification accuracy
when the encoder of A (eA) is composed with the classifier
of B (cB) and the encoder of B (eB) is composed with the
classifier of A (cA). This measure of alignment may intui-
tively be thought of as measuring how well information may
be passed among agents’ latent spaces; if the classification
accuracy is high, the two agents must be able to
“understand” each other to some extent, which corresponds
to a high value of aP.

Compared to the semantic measure of alignment, this
pragmatic measure is less discerning but more broadly
applicable. On the one hand, using aP may mask subtle dif-
ferences in encoding functions between agents, as long as
the agents remain able to make correct classification deci-
sions. On the other hand, aP mitigates the limits introduced
by aS in directly measuring distances in the encoding space
of agents; one can measure task performance with humans
as partners without ever directly measuring a human’s
internal representations. Lastly, note that, assuming indi-
vidually-optimal agents A and B, pragmatic alignment is
maximized when semantic alignment is maximized as well;
in addition, we confirmed in experiments that the two meas-
ures are correlated.

3. Background

This article applied two techniques from prior art to the
context of latent space alignment. These techniques were
used as baselines against which to compare our proposed
technique and are reviewed in detail in this section; a
broader review of related literature is included in Section 14.

3.1. Observationally Augmented Self-Play

Observationally Augmented Self-Play (OSP) is a data-effi-
cient technique for learning social conventions (Lerer &
Peysakhovich, 2018). Framed in the context of multi-agent
games, the authors set out to train new agents to learn a
fixed agent’s policy such that, when the new agent and fixed
agent worked together, they achieved a high reward in the
game. A simple example of this sort of behavior was a new
agent learning to drive on the right or left side of roads in a
simulated grid, choosing a side in order to diminish the
likelihood of crashing with the other agent.

In training a new agent, OSP assumes access to an envir-
onment with a reward function and a small amount of
“paired” data characterizing the fixed agent’s behavior. These
paired data take the form of state-action pairs of states from
the environment and subsequent actions that the fixed agent’s
policy produced. The key insight of OSP is that combining
self-play in the environment with supervised training of
paired data guides a new agent to learn to the fixed agent’s
policy. Intuitively, this occurs because self-play encourages
the new agent to adopt one of potentially many optimal poli-
cies, while the supervised data breaks ties between optima to
favor the right policy. In the driving example, this corre-
sponds to optimal driving strategies resulting in all agents
driving on the right or left side of the road, while paired data
specify that in some specific instances, the fixed agent drove
on one particular side of the road, breaking the tie.

While OSP was developed in the context of multi-agent
RL games, we claim that it may equally well be applied to
the problem of latent space alignment. In this context, the
social convention that must be learned is the meaning of
representations. Indeed, the encoding function e and classi-
fying function c may be thought of as independent agents
that must agree upon the interpretation of representations.
The environment reward, which drove the new agent’s pol-
icy to optimality in OSP’s formulation, may be replaced by
supervised classification loss to the same effect. Similarly,
paired state-action data may be replaced by inputs and cor-
responding representations.

3.2. The Prototype Case Network

In addition to OSP, we also studied Prototype Case Networks
(PCNs) within the context of latent space alignment (Li et al.,
2018). Originally, PCNs were introduced as a technique for
building interpretable neural network classifiers. The intuition
behind the networks was to learn meaningful prototypes and
simple classification rules, thus making it easier for humans to
understand how a PCN works.
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Concretely, a PCN is a neural net composed of four parts:
an encoder, a decoder, latent prototypes, and a linear classifier.
The encoder and decoder serve the traditional roles of map-
ping high dimensional inputs to low-dimensional latent repre-
sentations and back (Kingma & Welling, 2014). The latent
prototypes are a set of k (specified by the researcher) trainable
points in the latent space. Lastly, a linear layer generates classi-
fication distributions of an encoding by taking the softmax of
a weighted sum of l2 distances from an encoding to each
prototype in the latent space, with the weights determined by
the linear layer. Thus, inputs are classified by passing them
through the encoder, calculating the distance to each proto-
type, and passing those distances through the linear layer. In
addition, prototypes may be visualized by passing the latent
prototypes through the decoder. The whole network may be
trained end-to-end by a loss function that encourages good
reconstructions, high classification accuracy, and tight cluster-
ing between prototypes and encodings of inputs. For further
details, we encourage readers to examine the original paper
describing PCNs (Li et al., 2018).

The results presented with the development of PCN are
promising and hint at human-aligned latent spaces. In clas-
sifying digits from MNIST images, for example, encodings
formed clusters around prototypical digits. Thus, although
the latent spaces learned by PCNs may not align with other
machines’ representations, it appears plausible that the
inductive biases of the architecture and training terms are
sufficient to match humans’ representations.

4. Technical approach

In addition to the two techniques discussed above, we devel-
oped a new technique for latent space alignment that
improves upon the data efficiency of OSP. We maintained the
underlying notion of framing latent space alignment as learn-
ing a social convention, because such a framing allows for
adopting any other agent’s representation, not just a human’s.
However, we introduced an adversarial training technique to
shape the latent space, which constrained the set of learned
representations and therefore improved performance for the
same amount of paired training data. In this section, we have
detailed the technique we developed, Adversarially Guided
Self-Play (ASP), and analyzed the resulting benefits.

4.1. Adversarial shaping of latent spaces

In developing ASP, we supplemented the technique pro-
posed in OSP with adversarial training to shape the learned
latent space. Thus, as in OSP, we required access to a classi-
fication dataset ((X, Y) pairs for supervised learning of the
task) and a set of paired data, P, comprising inputs and
associated representations, (X, Z).

In addition to those two datasets, ASP required the add-
ition of a third dataset of representations without associated
inputs. This unpaired dataset, Z, described the distribution
of representations that the partner generated. Such data are
often easier to gather than paired data: for example, if lan-
guage is thought of as a representation for ideas, it is much
easier to gather a corpus of English sentences than a set of
ideas and associated language.

The architecture of the agents we trained is depicted in
Figure 2. The encoding and classification functions
detailed in our problem formulation are instantiated as
neural networks, e and c. In addition, a decoder, d, recon-
structs inputs from representations. Lastly, an adversary
network, a, predicts whether an encoding is fake (gener-
ated from the encoder) or real (from a dataset of unpaired
encodings Z).

The training loss for e, d, and c is composed of four
weighted terms (with positive, real-valued weights of terms
denoted by ks), representing the four simultaneous objec-
tives of high classification accuracy, high-quality reconstruc-
tions, matching the paired representation data, and fooling
the adversary. The adversary, conversely, is trained to distin-
guish between fake encodings and those drawn from the
dataset, Z, of unpaired encodings. The loss functions are
shown in Equations (5) and (6); note the switched sign for
the adversarial training term that encourages e to fool the
adversary.

loss ¼ k1
1

jðX,YÞj
X

ðx, yÞ2ðX,YÞ
1y¼ argmax cðeðxÞÞ log cðeðxÞÞ

þ k2
1
jXj

X
x2ðX,ZÞ

ðx� dðeðxÞÞÞ2

þ k3
1

jðX,ZÞj
X

ðx, zÞ2ðX,ZÞ
ðz � eðxÞÞ2

� k4
1
jXj
X
x2X

log aðeðxÞÞ

(5)

x e z d

a

c ŷ

x̂

f̂

(X, Y ) Supervised Classification Data
(X, Z) Paired Representation Data
Z Unpaired Representation Data

Figure 2. An encoder maps input, x, into representation, z. From z, an adversary, a, predicts whether the representation was fake or real, a classifier, c, estimates a
classification ŷ , and decoder, d, creates a reconstruction x̂ of the original input. Classification, paired, and unpaired data may be used in training. (X, Y) Supervised
Classification Data. (X, Z) Paired Representation Data. (Z) Unpaired Representation Data.
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lossadv ¼ 1
jXj
X
x2X

log aðeðxÞÞ þ 1
jZj
X
z2Z

log ð1� aðzÞÞ (6)

Although these equations have many terms, they reflect
the standard training losses used often in classification tasks
(the categorical cross entropy term), autoencoders (the mean
squared error of reconstructions and inputs), regression
tasks (the term for paired inputs and representations), or
adversarial training (the adversary terms). Having written
the loss function, training the model consisted of finding the
parameters of e, a, d, and c to minimize the loss. We used
Keras with a tensorflow backend to instantiate and train our
models; code and trained models will be provided online
upon paper acceptance (Chollet et al., 2015).

4.2. Analysis of adversarial pruning

In developing ASP, we hypothesized that using an adversary
in training would enable agents to learn well-aligned latent
spaces more efficiently. In this section, we confirmed this
intuition by analyzing the effects of ASP in reducing the
number of possible learned encoding functions. We focused
on the degree of pruning: how many functions were ruled
out by a well-trained adversary. Both intuitively and for-
mally, using an adversary constrained the set of possible
learned latent spaces, leading to more efficient learning of
the correct alignment.

4.2.1. Intuition of adversarial pruning
The intuition behind the advantages conferred by adversarial
training is simple: using an adversary forced the learned
encoding function to conform to a desired distribution of
outputs, which reduced the number of possible functions
that could be learned, leading to better-aligned latent spaces.

Consider the example of the firefighter and expert draw-
ing on a map. Recall that the expert must communicate a
safe path for the firefighter to follow through a burning
building. If the expert were to draw a line that crossed
through walls or was implausible in some other way, the
firefighter could immediately state that, regardless of what
path the expert was actually trying to convey, the firefighter
cannot understand the drawing. This corresponds to adver-
sarial training: paths that go through walls do not fall within
the distribution of paths the firefighter is willing to take.
Only after the expert begins to draw realistic paths does it
make sense to consider other aspects of communication,
such as the orientation of the map.

4.2.2. Discrete case analysis
Here, we mathematically examine the benefits of adversarial
pruning and confirm the intuition from earlier. Consider a
discrete representation problem with X ¼ jXj discrete
inputs, Z possible discrete encodings, and a pre-trained
encoding function e that maps from inputs to encodings.
We seek to learn a function, f, that best approximates e, but
in the absence of further information, there exist ZX possible
functions, as each input could map to any encoding.

When training with ASP, we have access to a dataset of
unpaired representations, which describes the distribution
that e produces: pi ¼

P
x2Xs:t: eðxÞ¼zi

PðxÞ: Thus, we may con-
strain f to belong to the set of all functions for which sub-
sets of the inputs with probabilities that sum to pi map to
representation zi. Calculating the size of this set of
functions—functions that are constrained to match e in
distribution—is a combinatorics problem: there

are
X

p0X, p1X, :::, pZ�1X

� �
such functions. A small value

implies a greater advantage from adversarial pruning.
The fact that the number of such functions is the multi-

nomial coefficient implies that the advantage depends upon
the distribution described by the pi’s. We therefore analyze
the advantage conferred by ASP in the worst case: the uni-
form distribution. Our analysis measures the log ratio (lr) of
adversarially allowed encoding functions to all possible func-
tions.

lr ¼ ln

X
p0X, :::, pZ�1X

� �
ZX

0
@

1
A (7)

¼ ln
X

p0X, p1X, :::, pZ�1X

� �
� ln ðZXÞ (8)

¼ ln
X!

ðXZ !ÞZ
 !

� X ln ðZÞ (9)

¼ ln ðX!Þ � Z ln
X
Z
!

� �
� X ln ðZÞ (10)

¼ X ln ðXÞ � X þ Oð ln ðXÞÞ � X ln
X
Z

� �

þX � ZO ln
X
Z

� �� �
� X ln ðZÞ

(11)

¼ O ln ðXÞ � Z ln
X
Z

� �� �
(12)

The steps from Equations (7)–(10) follow from the
repeated application of log rules, the definitions of combina-
torial terms, and the assumption of the worst-case uniform
probability distribution. Equation (11) comes from the
application of Stirling’s approximation, which remains
accurate even for small numbers but introduces big-O nota-
tion. Finally, Equation (12) is derived from subsequent can-
cellation of terms and more application of log rules.

The final expression for the log ratio shows how the
degree of pruning varies as the number of inputs and
encodings changes. As the number of inputs increases, the
log ratio decreases, meaning the adversary prunes a greater
proportion of functions. Conversely, as the number of repre-
sentation grows (up to the limit of X¼Z, corresponding to
a unique representation per input), the log ratio increases.
Thus, ASP confers its greatest advantage when the number
of encodings is small relative to the number of inputs,
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which, given that the goal of encoding functions is often to
generate compact representations, should often be the case.

Although the above analysis was conducted for functions
mapping from a discrete set of inputs to a discrete set of
representations, the same intuition applies to the continuous
case. Adversarial pruning fixes the learned function to out-
put the correct distribution in the representation space, but
given the continuous nature of the function domains and
ranges, we are unable to calculate standard ratios, as was
done in the discrete case.

5. Experiment overview

To complement the mathematical analysis in the previous
section, we designed a series of experiments to measure the
ability of different techniques to train agents with latent
spaces aligned with a partner’s. Each experiment shed light
on a different aspect of either the latent space alignment
problem broadly, or on the performance of different training
techniques. Table 1 summarizes each of the experiments.

These experiments explored different aspects of latent
space alignment. First, we measured the ability of agents to
align with other, pre-trained, agents. Within these robot-
robot teams, we recorded both the pragmatic and semantic
metrics of latent space alignment; both metrics indicated
that ASP outperformed OSP, which indicated that the prag-
matic measure of alignment is a reasonable proxy for
semantic alignment. Given the flexibility of robot-robot
teams, we explored how the relative benefits of ASP over
OSP varied as a function of the model architectures. Second,
we conducted human-participant studies to evaluate the
extent to which agents could align with human representa-
tions. In these experiments, we trained agents to align with
latent spaces designed by the research team. Measuring
semantic alignment was impossible with humans, but the
pragmatic measure revealed that humans were able to form
effective teams with ASP-trained agents. Finally, human par-
ticipant studies established that the same agents that resulted
in high human-agent latent space alignment also supported
well-calibrated participant trust in agents.

The following sections present each experiment with
associated results and analysis. First, we review preliminary

information on experiment design that many of our experi-
ments had in common: the types of data and associated
tasks that we used to analyze team performance. Subsequent
sections explain each experiment in more detail, including
metrics and analysis.

6. Experiment preliminaries

In designing the evaluations for this work, we created
experimental domains to examine particular aspects of the
latent space alignment problem. First, we used two broad
sets of data (the MNIST digit dataset and a dataset of
recorded human motion trajectories) to allow us to draw
conclusions beyond one specific domain. Second, for each
dataset, we devised two classification tasks. Separating the
task from the input data was important in our analysis of
the utility of latent spaces for particular tasks. In some of
our experiments, including all human-subject studies, we
trained models to align with human-designed latent spaces.
We hypothesized that certain designs would be most useful
for certain tasks; creating two tasks per dataset enabled us
to measure the relationship between latent space design and
changes in task performance, holding the input data con-
stant. In this section, we described the data, tasks, and latent
space designs employed in all our experiments.

Our first dataset was the MNIST digit image dataset,
used for two tasks. In the first task, parity prediction,
machines were trained to reconstruct MNIST images and
predict the parity of the digit (even or odd) with a softmax
output over 2 neurons at the end of the classifier. In the
second task, digit prediction, machines were likewise trained
via reconstruction loss of the images, but the output of the
classifier was a softmax over 10 neurons, corresponding to
each digit. In both cases, we allowed PCNs to use
10 prototypes.

Our second dataset was a series of trajectories of humans
placing bolts on a table in a lab setting; as with the MNIST
data, these trajectories were used for two tasks. First, for
intersection prediction, models learned to classify whether a
pair of trajectories crossed. Second, for target prediction,
models were trained to predict the location a human was
reaching toward given their prior motion. (Note that,

Table 1. A high-level summary of the experiments detailed in the remainder of this paper.

Section Experiment Findings

7 Semantic measure of individualized robot-
robot alignment

New agents aligned with pre-trained agents;
performance was measured via semantic metric.

8 Pragmatic measure of individualized robot-
robot alignment

Using the pragmatic metric of alignment
confirmed trends from semantic measure.

9 Varied latent space dimensionality and amount of
paired data for robot-robot alignment

Changing the dimensionality of agents’ latent
spaces and the amount of paired data affected
ASP’s advantage over OSP.

10 Human-robot pragmatic alignments Humans were able to select or interpret encodings
for high pragmatic alignment with agents.

11 Human participants created encodings for robots
by drawing

Humans were able to create encodings from
scratch that caused ASP-trained agents to
correctly classify inputs.

12 Human participants predicted robot successes
of failures

Humans were able to appropriately calibrate their
trust of machines, especially using ASP and
useful latent designs.

The first half of the experiments measured the ability of agents to align with other agents; the second half studied how well agents that
had been trained to align with human-designed latent spaces could partner with humans.
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intuitively, the intersection and target prediction tasks cor-
respond in some way to the firefighter in the example seek-
ing a path and a destination in a burning building.) The
data within the trajectory dataset tracked participants’
motion during an assembly task involving the placement of
8 bolts in any order. A motion-capture system recorded the
3D location of the participants’ gloved hand at 50Hz.

After recording a full run, we hand-labeled the motion
data to indicate which of 8 bolt locations the participant
reached for next. (If, for example, a participant had just
placed a bolt in location 0 and was next going to place a
bolt in location 7, every point until the participant reached
location 7 was labeled as “7.”) The labeled full runs were
divided into 1-s trajectories by stepping through each run at
0.2-s increments (i.e., a full run would generate a trajectories
for the motion from time 0 to 1 s, from 0.2 to 1.2 s, from
0.4 to 1.4 s, etc.). Figure 3(a) depicts an example of a com-
plete run, segmented into 1-s trajectories. Our models
accepted the 1-s trajectories as flattened vectors; that is, 150
points fed into a fully connected layer, representing the
50Hz times 3 dimensions.

The intersection prediction task was to classify, given two
1-s trajectories, whether the trajectories overlapped in the x
– z plane (corresponding to a person reaching over another
person’s hand while moving toward a bolt). This type of
task is important: we would like machines to be able to
determine if trajectories are a safe distance apart from one
another. Rather than building a single encoder that would
take in both trajectories and would therefore have to com-
pute a single representation for them jointly, we modified
our model design to create two instances of the encoder net
and two of the decoder net that each handled a single trajec-
tory separately. (For ASP, we likewise created two instances
of an adversary net, each consuming only a single represen-
tation.) Only the predictor net consumed the latent repre-
sentations of both trajectories to make the overlapping
classification decision; in other words, the learned represen-
tations only modeled a single trajectory each. This design
decision was also critical to the PCN implementation, which,
while learning 64 prototypes (inspired by the 8 bolts each
for the first and second trajectories), would have had to cre-
ate prototypical encodings for trajectory pairs, whereas with
our design, prototypes were decomposable into prototypes

for each separate trajectory. Figure 3(b) shows the basic
architecture of the intersection classifier.

The target prediction task was to predict, given a 1-s tra-
jectory, which bolt location the participant was reaching for
next. This task is non-trivial for several reasons: participants
were allowed to choose bolt locations in arbitrary orders
during data collection, human motion rarely obeys simple
heuristics like minimizing straight-line distance, and some
1-s trajectories were not very informative (e.g., if a partici-
pant had just placed a bolt at location 0 and was reaching to
pick up a new bolt, it was unclear where that new bolt may
go). The PCN was allowed to learn 8 prototypes, inspired by
the 8 target locations. The models predicted the target loca-
tion via an 8-neuron softmax layer at the end of
the classifier.

These four tasks—parity, digit, intersection, and target—
were used throughout the experiments listed in the rest of
this article. Those experiments changed many factors, such
as whether agents were paired with other agents or with
humans, but the underlying structure of each experiment
was the same: agents were trained in a classification task
and we measured how well the latent spaces those agents
learned were aligned with their partner’s representations.

(Mycal: I currently go into the latent space design idea in
this section, because it’s sort of cross-cutting in that it
touches on lots of experiments. However, it’s a bit distinct
from the problem setup earlier in this section. Is it worth
separating out?)

In our human-participant experiments, we wished to cre-
ate agents that aligned in some sense with the representa-
tions humans used. Directly measuring humans’ encodings
of inputs was impossible, so we instead created latent space
designs to train new agents to align with latent spaces that
had been designed by the research team. These designs,
shown in Figure 4, were hand-crafted rules that mapped
inputs to points in a latent space. For example, we created a
2D latent space that mapped MNIST images to points in a
2D plane, clustering points by digit in a dialpad-like pattern.
In training, these designs were used to generate the paired
data required by OSP and ASP and the unpaired data add-
itionally required by ASP.

For both of the MNIST and trajectory-related tasks, we
created two latent space designs. For MNIST, both designs
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Figure 3. Human motion data (a) was used for target prediction and intersection classification (b). (a) Two views of the same full run plotted within 3D axes nor-
malized by the full range of all participants’ motion. Participants picked up bolts at the bottom of the plot and placed them in one of eight locations at the top.
The colored segments each represent 1 second of motion within the run. (b) The model for classifying intersections used duplicate encoders and decoders for trajec-
tories, and a single predictor net.
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operated in 2D latent spaces, creating 10 clusters by digit in
a dialpad-like structure, or in 2 clusters by parity. For the
trajectory data, one design created a ray-like structure of
encodings in 2D, clustered by target bolt. We also devel-
oped a more complex design in the form of “sketches,” or
16� 16 pixel drawings of trajectories collapsed along the y
axis. In other words, sketches depicted the coarsely pixelated
occupancy of the points a person reached over in the course
of a given trajectory, in a manner similar to how a human
might draw quickly on paper. The latent designs in the bolt
domain experiments were inspired by the “X” and sketches
employed in the firefighting example.

Just as we introduced two tasks per input data (i.e.,
parity and digit for MNIST, and intersection and target
for trajectories), we used two latent designs in order to
separate the effect of a particular design from other
aspects of our experiments. Specifically, we hypothesized
that some latent designs would enable high performance
for some tasks, but lower performance in others. For
example, creating clusters by the parity of an MNIST fig-
ure would likely be useful in the parity task but less use-
ful in the digit task. Lastly, while experimental results
indicated that the designs chosen by the research team
indeed did support good human-robot interaction, it is
worth noting that the designs used in these experiments
could certainly be improved.

7. Individualized robot-robot semantic alignment

In our first experiment, we investigated the extent to which
different training techniques allowed new models to learn
an existing model’s latent space. For example, if a model
had been trained end-to-end to predict a digit from an
MNIST image, with no supervision to guide its learned
representation, could a new model align with first model’s
latent space?

For each of the four tasks, we trained 10 predictive
autoencoders (PAEs), each using a 2-dimensional latent
space. (PAEs were simple encoders, decoders, and classifiers;
one may equivalently think of them as OSP- or ASP-trained
models without the representation training losses.) We then
trained 10 new models, using both ASP and OSP, to do the
same task, but this time we generated paired and unpaired
representation data by querying the pre-trained PAEs. Given

that interpretability-inspired models like PCNs were
designed neither to partner with machines nor accept data
to guide learned latent representations, we did not include
PCNs in this experiment. Teams were formed by partnering
the new models with their corresponding PAEs.

In evaluating the models trained by each technique, we
calculated the semantic measure of latent space alignment
between the ith ASP- or OSP-trained model, Ai, and the
ith PAE model, PAEi, as aSðAi, PAEi,XÞ: Recall that aS
measured the negative mean squared error of encodings
generated by two different agents. We plotted the median
and quartile semantic measures of latent space alignment
for each task, normalized by the median value of the
alignment for OSP-trained models for that task, in
Figure 5.

The results demonstrated that the agents trained with
ASP were consistently better-aligned with their PAE partners
than the OSP-trained models. The lower values for ASP
show that compared to OSP, ASP-trained models routinely
generated encodings that were closer to the encodings the
PAE partners generated. Furthermore, because both the
ASP- and OSP-trained models were trained from the same
original 10 PAE models, we may conclude that the differ-
ence in training technique was the cause of the better align-
ment instead of, for example, differences among the PAE
partners. Thus, as measured by the semantic measure of
latent space alignment, ASP outperformed OSP.

Latent 0

L
at

en
t

1

Latent 0

L
at

en
t

1

0
1
2
3
4
5
6
7
8
9

(a)

X Loc.

Y
Lo

c.
Z

L
oc

.

Latent 0

L
at

en
t

1

0

1
2
3
4
5
6
7

(b)

Figure 4. Latent space designs for the MNIST (a) and trajectory (b) domains. (a) Designs for latent spaces for the MNIST tasks created clusters by parity (left) or in a
dialpad pattern by digit (right). (b) Trajectories (left) were mapped to 2D representations based on target bolt location (middle) or converted to a sketch (right).
Examples of learned latent spaces conforming to these designs are included in Appendix A.
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Figure 5. Median (and quartile) MSE of encodings generated by models and
their trained partners, normalized by MSE of OSP for that task. For the same
task and amount of paired data (in parentheses), models trained with ASP gen-
erated significantly closer encodings to their partner’s (p< 0.05).

INTERNATIONAL JOURNAL OF HUMAN-COMPUTER INTERACTION 9



8. Individualized robot-robot pragmatic alignment

To complement the analysis of ASP and OSP by comparing
values of semantic latent space alignment, we also recorded
the pragmatic measures of latent space alignment. That is,
using the same models (Ai and PAEi) that had been trained
for the experiment in the previous section, we recorded
aPðAi,PAEi,X,YÞ for each of the 4 tasks. Although the prag-
matic and semantic measures of latent space alignment dif-
fer, if they are faithful proxies to an underlying notion of
alignment, the trends recorded in the previous section
should be reflected in measures of pragmatic alignment as
well. The results of measuring pragmatic alignment for all 4
tasks are plotted in Figure 6.

As expected, the results confirmed that models trained by
ASP resulted in higher pragmatic alignment scores than
OSP-trained models. Recall that the pragmatic metric of
latent space alignment measured classification accuracy, so
the higher bars for ASP indicate that it consistently resulted
in better team performance than OSP.

These results are important for two reasons. First, the
results themselves speak to the fact that, for the same
amount of paired data as OSP, ASP yielded better-aligned
models. Second, the results confirm that the trend of better
alignment, as measured by our semantic measure of align-
ment, was reflected in our measure of pragmatic alignment
as well. This indicates that pragmatic alignment is a good
proxy for semantic alignment and offers hope that, when
measuring semantic alignment is not possible, we may still
be able to use the pragmatic measure. Lastly, it is worth not-
ing that the magnitude of the differences between ASP and
OSP was relatively smaller when measured by pragmatic
alignment. This corresponds with the notion that minor
mis-alignments in latent spaces may be masked by the
coarser evaluation metric of classification accuracy; thus, if
anything, the pragmatic measure of latent space alignment
likely underestimates differences among training techniques.

9. Changes in latent space dimensionality and
amount of paired data

The two previous experiments demonstrated that, as meas-
ured by both semantic and pragmatic metrics, ASP resulted

in better-aligned models than OSP. In earlier theoretical ana-
lysis of ASP, we derived that the advantage of ASP over OSP
is not constant: rather, it depends upon the relative sizes of
input and representation spaces. Likewise, the analysis indi-
cated that rotational ambiguities could not be solved by ASP
without paired data, so the benefit of ASP over OSP likely
varies as a function of the amount of paired data used in
training. In this section, therefore, we analyzed the extent to
which ASP-trained models outperformed OSP-trained models
within the MNIST domain, as the dimensionality of the latent
space and the number of paired data changed.

Our results were plotted in Figure 7. We used a prag-
matic measure of latent space alignment by measuring task
performance of mixed teams; however, rather than measure
classification accuracy, we measured the image reconstruc-
tion loss as the MSE between the input image and decoded
image. (We used reconstruction loss simply because it
revealed more fine-grained differences in alignment than the
cruder, digit-based alignment necessary for high classifica-
tion accuracy.) For each training technique, latent dimen-
sionality, and number of training examples, we first trained
10 PAE’s on the MNIST data and then trained new models
using ASP or OSP to complement the PAE. Median and
quartile mixed-team reconstruction MSE’s are plotted.

The results supported our conclusions from previous
experiments. First, for the same latent dimensionality and
amount of paired data, ASP-trained models consistently out-
performed OSP-trained models. Second, the leftmost plot
sheds light on the utility of ASP in high-dimensional latent
spaces. Using a higher-dimensional latent space enabled the
models to pass more information about the image through
the representation, but a larger representation space also
made the latent space alignment problem more challenging.
Furthermore, theoretical analysis had indicated that, in gen-
eral, ASP conferred its greatest advantage when the number
of representations was small, implying that higher dimen-
sionality would mute the benefit of ASP. Instead, a more
complex pattern emerged. As the latent dimensionality
increased, ASP-trained models actually improved, indicating
that they were able to use the greater expressivity of high-
dimensional encodings for good representations, before
eventually worsening. In fact, this improvement and subse-
quent degradation reflect the conflicting forces of ASP main-
taining good alignment but eventually being unable to solve
rotational ambiguities in higher dimensions. The pattern of
waxing and waning benefits was repeated in our third con-
clusion supported by the rightmost chart: ASP provided the
most benefit over OSP when provided with enough paired
data to resolve rotational ambiguity but not so much that an
adversary was no longer useful. Taken together, these results
show that ASP indeed provided benefits over OSP, but the
magnitude of the benefit was a complex function of latent
dimensionality and the number of paired data used.

10. Human-robot pragmatic alignment

While the previous experiments explored the ability of ASP
and OSP to align different agents’ latent spaces, the
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Figure 6. Median (and quartile) classification accuracy for mixed teams with
models trained on their partner’s latent space. For the same amount of paired
data on a given task, noted in parentheses, ASP outperformed OSP (p< 0.05).

10 M. TUCKER ET AL.



experiments detailed in this section and later tested how
well agents could align with humans’ representations.

In this experiment, we used the pragmatic measure of
latent space alignment to compare the effects of different
latent designs and training techniques in creating well-
aligned models. In other words, we measured the classifica-
tion accuracy of teams comprising either a human as an
encoder and a machine as a classifier, or vice versa. In all
our experiments, human participants were recruited through
surveys posted on Amazon Mechanical Turk (AMT) and
likely did not have a background in machine learning. (As a
quality assurance mechanism, we inserted a validation ques-
tion within every survey that participants should have been
able to answer correctly, given the prompt; if participants
failed to answer that question correctly, there responses
were discarded.)

Before releasing the surveys, we trained over 200 unique
models: for each of the four tasks, we used at least five com-
binations of latent space design and training technique (e.g.,
ASP and MNIST clusters by digit, or OSP and MNIST clus-
ters by parity, etc.), and we used a duplication factor of 10.
Recall that we defined our latent space designs in Section 6.
We hypothesized that training agents to align with our
latent space designs would enable a high measure of prag-
matic alignment. Furthermore, in addition to training mod-
els with ASP or OSP to align with a latent space design, we
trained models for each task using either a predictive
autoencoder (PAE) or a PCN. The PCNs in particular, given
their design as human-interpretable models, provided a use-
ful baseline for aligning with human representations.

In order to actually measure alignment, we released two
sorts of surveys on AMT: humans either served as encoders
by selecting one of several possible encodings that were then
passed through the machines’ classifiers, or humans were
presented with encodings and were asked to make a

classification decision. These two types of surveys reflect the
two terms in our definition of aP.

At the start of every survey, participants received a text
summary of how the machine worked at a high level and
were shown examples of (input, latent, prediction) tuples,
generated by testing the machine. An example prompt is
provided in Appendix B.

In our first type of survey, wherein participants selected
encodings, participants were shown an input (e.g., an
MNIST image) and told to select the option from a provided
list of encodings that would most likely cause the machine
to make the correct classification. The list consisted of pre-
computed encodings: one was the true encoding of the input
generated by the model, while the rest were randomly
chosen (as long as they resulted in unique classifications).
Five options were presented for the digit and target tasks.
Only two classes were possible for the parity and intersection
tasks, so only two representations were shown. We pre-
computed encoding options in this survey to simplify the
task for participants; a subsequent survey asked participants
to create their own. Of the 10 questions asked per survey,
one encoding was drawn from the subset of the test dataset
in which the machine misclassified the input (e.g., given an
image of a “1,” the machine classified it as a “7”). In our
second type of survey, wherein participants served as classi-
fiers, participants were shown an encoding (e.g., a point in a
2D latent space) and were told to classify it (e.g., which of
the 10 digits). The classification accuracies for both survey
types are presented in Tables 2 and 3.

As shown in both tables, the parity task was sufficiently
simple to enable high measures of pragmatic alignment
regardless of the latent type used (except, unsurprisingly,
clustering by digit). Conversely, the digit prediction task
revealed benefits from using the ASP digit latent space.
Participants who used ASP digit models were better able
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Figure 7. For a fixed number of paired examples (32), ASP generated better MNIST reconstructions than OSP for varying latent dimensionality (left). For a fixed
latent dimension (32), ASP outperformed OSP for varying numbers of paired examples (right).

Table 2. Classification accuracy when humans chose from a list of encodings.

Task ASP dig. ASP par. OSP dig. OSP par. PAE PCN

Parity 0.56 (50) 0.61 (110) _ 0.62 (130) 0.69 (120) 0.65 (110)
Digit 0.68* (50) 0.34 (70) 0.26 (80) _ 0.33 (70) 0.53 (100)

ASP 2D ASP sketch OSP 2D OSP sketch PAE PCN

Inter. 0.58 (130) 0.79* (140) 0.59 (70) 0.70 (110) 0.65 (80) 0.56 (50)
Target 0.20 (40) 0.63** (70) 0.30 (40) 0.44 (70) 0.31 (40) 0.27 (50)

Methods with significantly better performance than all others for a given task are marked with �for p< 0.1 and ��for p< 0.05. The number of question
responses is noted in parentheses.
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to both select the proper encodings from images and pre-
dict digits from encodings. Despite using the same paired
data as ASP, the OSP clusters resulted in significantly
worse performance in digit prediction, indicating that the
sharper boundaries created by ASP yielded better human
interaction. We observed similar benefits from using ASP
for trajectory tasks, particularly when employing sketch-
based representations.

To our surprise, participants were substantially better
encoders when using sketch-based representations during
both target and intersection tasks. We had initially suspected
that a simpler 2D latent space would be sufficient for the
target task; this preference for sketches over 2D latents,
however, was reversed when humans served as predictors.
One possible explanation of this behavior is that participants
may perform better when their role requires less computa-
tion. Specifically, transforming a trajectory into a sketch is
simpler than transforming it into a 2D encoding (hence
participants preferring sketches when acting as encoders),
but transforming an encoding into a target location or inter-
section decision is simpler when using 2D encodings instead
of sketches (hence participants preferring 2D encodings
when acting as predictors).

11. Assessing humans as encoders

In addition to the previously-detailed experiments measuring
pragmatic alignment of humans and agents, we conducted
further experiments to assess the ability of human to gener-
ate encodings for well-aligned machines. Recall that in the
previous surveys, participants selected from a set of pre-com-
puted encodings rather than generating their own. In this
section, however, we present results from an experiment in
which we asked participants to use a computer mouse to cre-
ate their own encodings. (Simply clicking to generate a point
sufficed for 2D encodings, and sketches were generated by
clicking and dragging.) These encodings were then passed
through the machine’s classifier to generate classifications.

This survey mainly served as a proof of concept. First,
generating 2D encodings in many ways became quite sim-
ple: participants could look at previous encodings that
mapped to the correct classification and simply replicate
that point (whereas in the previous survey, the encodings
shown were all distinct from the example points). Second,
generating sketch-based encodings inherently favored ASP.
The drawing interface supported by AMT employed a fixed
opacity, meaning that users were inherently forced to either

color in pixels entirely or leave them blank. This corre-
sponded to the sort of stark black and white lines that ASP-
trained models learned. We therefore did not attempt to
compare methods in this last survey; we merely wished to
establish whether participants were at all able to produce
encodings that could be used by a predictor model trained
by ASP.

Although simple, this experiment confirmed that partici-
pants were indeed able to generated encodings that were
correctly interpreted by ASP-trained models. In particular,
the ASP parity latent space for the parity task resulted in a
99% correct classification rate with 70 questions answered,
far higher than when participants were allowed to choose
from pre-computed encodings. To a lesser extent (but still
impressively) participants managed to create encodings for
digit that resulted in the correct digit 70% of the time when
using the ASP digit latent spaces. The previously observed
pattern of digit clustering proving useful for digit prediction
and parity clustering for parity prediction was repeated in
these trials.

We also confirmed that participants were able to draw
sketches that enabled accurate target classification. Figure 8
depicts the AMT interface presented to participants, as well
an encoding and sketch a participant drew in response to an
MNIST image and a motion trajectory. The sketch encoding
is particularly impressive. Converting the sketch into a
16� 16 pixel drawing and passing it through the predictor
model led the model to predict the correct target: location 0.
It is noteworthy that participants created reasonable encod-
ings of the trajectories instead of merely adopting the
approach of generating the simplest encoding that would
create the correct classification. For example, the participant
who generated the sketch depicted in Figure 8 could have
drawn a very short sketch near target location 0 but instead
opted to draw a longer line, reflecting the length of the ori-
ginal trajectory. This indicates that participants truly were
encoding inputs in much the same way that the models did.

12. Assessing trust calibration

In our final experiment, we wished to measure a new aspect
of human-machine alignment: trust calibration. Just as a
semantic measure of alignment was possible because of spe-
cific characteristics of robot-robot alignment, using humans
in a team allowed us to measure characteristics of alignment
that only humans could report. In this experiment, we
focused on the notion of trust. Trust, defined by Lee and

Table 3. Classification accuracy when humans were shown an encoding and had to choose the correct classification.

Task ASP dig. ASP par. OSP dig. OSP par. PAE PCN

Parity 0.63 (200) 0.82 (150) _ 0.70 (280) 0.75 (140) 0.82 (110)
Digit 0.52** (50) 0.30 (90) 0.33 (80) _ 0.24 (70) 0.30 (130)

ASP 2D ASP sketch OSP 2D OSP sketch PAE PCN

Inter. 0.68* (40) 0.61 (110) 0.62 (50) 0.53 (40) 0.56 (60) 0.55 (40)
Target 0.53* (130) 0.36 (110) 0.11 (90) 0.33 (130) 0.34 (150) 0.05 (130)

Methods with significantly better performance than all others for a given task are marked with � for p< 0.1 and �� for p< 0.05. The number of question
responses is noted in parentheses.
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See as “the attitude that an agent will help achieve an indi-
vidual’s goals in a situation characterized by uncertainty and
vulnerability,” is commonly used as a metric of human-
agent interaction; good interactions are characterized by
enabling humans to understand the extent to which they
should or should not rely upon a machine (Lee & See, 2004;
Wang et al., 2018). In this experiment, we assumed that an
individual’s goal was correct classification of an input, so
trust was reflected in participants’ belief that an agent would
correctly classify the input.

This experiment was conducted via surveys on AMT,
using the same models that had been trained for the previ-
ous human-agent experiments. Consistent with the earlier
surveys, participants were initially presented with a sum-
mary of how the machine worked and some (input, latent,
prediction) examples. After reading the prompt, participants
were asked 10 questions. In each question, participants were
shown an input (e.g., an MNIST image) and a representa-
tion (e.g., a point in a 2D latent space) and asked to rank
their confidence from 0 to 100 that the machine would
make the correct prediction (e.g., the digit in the image).

After a participant submitted a response to each question,
they were shown whether the machine had indeed made the
correct classification for the previous case and were pre-
sented with the examples from the instruction prompt to
refresh their memories. Of the 10 (randomly ordered) ques-
tions shown, 5 resulted in the machine making a mistake,
while the remaining 5 yielded a correct classification. This
artificially low 50% accuracy rate allowed us to better meas-
ure participants’ anticipation of failures.

After recording the participants’ responses, we analyzed
the data by measuring their trust calibration coefficients. We
defined this coefficient as the slope of the linear least-
squares fit for plotting model correctness (1 for correct, 0
for incorrect) over participants’ confidence. Perfectly cali-
brated trust would result in a slope of 0.01, corresponding
to high participant confidence when the model was correct
and low confidence when it was incorrect. Recall that trust
calibration, as opposed to simply high trust, is a desirable
property of human-robot interaction (Wang et al., 2018).

The trust calibration coefficients, multiplied by 100 for
clarity, were recorded in Table 4. In three of the four tasks,
at least one of the latent types yielded significantly positive
coefficients (p< 0.05). Results from the parity task, by far
the simplest of the four, demonstrated that participants were

able to establish well-calibrated trust for a large number of
latent spaces. For the digit and target tasks, only one latent
space yielded significant correlation. For the intersection
task, we were only able to establish significant positive cor-
relation for the ASP sketch at the level of (p< 0.1). These
results supported several conclusions.

First, we demonstrated once again that the utility of
latent space designs was task-dependent. Consider the values
for the parity and digit prediction tasks using the ASP digit
and ASP parity latent spaces; clustering by parity was opti-
mal for the parity prediction task, but clustering by digit
was optimal for the digit prediction task. This reversal of
optimality establishes that we observed no “dominating”
latent designs that were always better, independent of task.

Second, we performed analysis of covariance (ANCOVA)
and established significant effects of latent type on partici-
pants’ confidence. Specifically, we treated confidence as a
dependent variable and model correctness and latent type as
explanatory variables. For all four tasks, the latent type cat-
egorical variable had a significant effect on user confidence
(p< 0.05). The significance of the interference between
latent type and correctness, however, was less definitive: for
the parity and digit tasks the interference was significant at
p< 0.05, for target at p< 0.15, and was not significant for
the intersection task. In other words, the latent type clearly
shifted participants’ confidence up or down but did not con-
sistently change the slope of the trust models for all tasks.

(Mycal: I’ve removed the PCN Decoded data from this
draft. I still have it and can explain it, but I’m not sure if it
is essential to this main argument, and in some ways it
muddies the waters because it’s yet another thing that has to
be explained. I don’t think removing it is dishonest - I actu-
ally think I present a stronger and more solid case when
PCN Decoded results are included - but it just seems like
this article is already too sprawling.)

13. Analysis review

(Mycal: One of the UIST reviews recommended having a
separate discussion section.) In the previous sections, we
presented the results and analysis for each of the experi-
ments we conducted. In this section, we briefly review the
three key findings from all the experiments taken together.

First, the pragmatic metric appeared to be a faithful, but
conservative, proxy of semantic latent space alignment. In

Figure 8. Participants successfully converted MNIST images to 2 D encodings (left) and trajectories into sketches (right). (a) PAE. (b) PCN. (c) OSP by parity. (d) ASP
by parity. (e) ASP by digit.
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measuring both metrics for the same robot-robot teams, we
found that the two measures were correlated. Furthermore,
we found that the semantic measure appeared to be the
more sensitive of the two metrics, but our pragmatic metric
could be used in more experiments, including those with
human participants.

Second, we found that techniques that used human
guidance in learning latent spaces (i.e., OSP and ASP)
outperformed unguided techniques, as well as a technique
borrowed from interpretability research. Furthermore, in
a series of experiments for different tasks, model architec-
tures, and latent space designs, we found that ASP outper-
formed OSP.

Third, we confirmed that, when using latent space
designs in training new models, the utility of particular
designs was task specific. For example, designs that clus-
tered MNIST encodings by digit were most useful for
digit classification tasks, but less useful for parity predic-
tion tasks.

(Mycal: Currently, I leave out the user-submitted com-
ments about using the latent designs. In some ways, they’re
pretty compelling, but they’re also very much just anecdotal
and this article is long. Are they worth including?)

14. Related work

In addition to the two specific techniques taken from prior
art (OSP and PCN) our work is closely related to work from
numerous fields. First, notions of conforming to expected
behavior and learning social conventions is explored in
research on norms emergence. Second, insights from imita-
tion learning indicate how demonstrations may be used to
guide learned behaviors. Third, work in creating interpret-
able models that humans understand is often motivated by
the same desire as our work in aligning latent spaces, but
specifically in the context of aligning with human models.
Lastly, although research in ontology matching often uses
different techniques than the ones we employed, the motiv-
ation of mapping between representation schemes is related
to the problem of latent space alignment.

14.1. Social conventions and norm learning

In this work, we implemented a specific technique, OSP,
for learning social conventions and drew inspiration
from the broader field of norm learning (Lerer &
Peysakhovich, 2018).

Researchers on norm emergence have long studied how
norms—expectations of behavior among a population of
agents—are formed, diffuse through populations, or may be
guided by particular “influencer” agents (Franks et al., 2013;
Savarimuthu & Cranefield, 2011; Sen & Airiau, 2007;
Verhagen, 2001). Our framing of latent space alignment is
related to commonality of behavior, and in particular our
adversarial approach of training in ASP vaguely resembles
the notion of sanctions in norm learning literature
(Andrighetto et al., 2010). Focusing on individual agents
instead of network effects, other work has explored how to
train a new agent to collaborate successfully with pre-trained
partners (Barrett et al., 2017; Stone et al., 2010).

These techniques offer important insight into training
specific agent behaviors, but our work differs in several
important ways. First, we examine the importance of repre-
sentation, as opposed to behavioral, alignment. Second,
unlike many of the techniques in norm learning (with the
notable exception of OSP), ASP does not required inter-
action with other agents during training time (Lerer &
Peysakhovich, 2018). Lastly, the experiments conducted in
this work demonstrate latent space alignment both with
other agents and with other humans.

14.2. Imitation learning

In contrast to the agent-centric focus of norm learning, imi-
tation learning work often attempts to train new agents to
learn a policy from a human teacher by way of demonstra-
tions of optimal behavior (Argall et al., 2009). Numerous
approaches to imitation learning have been proposed from
policy cloning, wherein behavior learning is cast as a super-
vised learning problem, to inverse reinforcement learning
(IRL), wherein agents attempt to learn the teacher’s reward
function, which may then be used to calculate an optimal
policy (Abbeel & Ng, 2004; Pomerleau, 1991). In recent
years, adversarial techniques have even been applied to imi-
tation learning by training an adversary to discriminate
between expert and learned behaviors (Ho & Ermon, 2016;
Li et al., 2017).

These techniques are related to our use of paired and
unpaired data in training new agents to learn a specific rep-
resentation function. However, imitation learning often lev-
erages notions of environment reward instead of our
classification contexts. In addition, our framing of latent
space alignment in order to enable high mixed-team task
performance differs from the standard imitation learning
goal of teaching an agent to perform a task on its own.

Table 4. Trust coefficients multiplied by 100 for different tasks and latent types.

Task ASP dig. ASP par. OSP dig. OSP par. PAE PCN

Parity 0.24 (70) 0.56* (130) _ 0.49� (110) 0.06 (100) 0.37� (90)
Digit 0.47* (110) 0.01 (130) 0.18 (80) _ 0.13 (120) 0.27 (80)

ASP 2D ASP sketch OSP 2D OSP sketch PAE PCN

Inter. �0.04 (40) 0.39 (100) _ �0.13 (40) 0.22 (80) 0.20 (90)
Target �0.02 (60) 0.43* (70) 0.04 (120) _ 0.11 (90) 0.26 (70)

A value of 1 corresponds to perfectly calibrated trust. Coefficients significantly greater than 0 (p< 0.05) are denoted with �. The number of question responses
is noted in parentheses.
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14.3. Model interpretability

Much like the agent-focused literature of norm learning,
interpretable representation learning is related to our work,
although it often only considers human partners. As stated
earlier, we used PCN as a baseline against which to compare
the methods we implemented (Li et al., 2018). More broadly,
however, the idea of interpretable machine learning models
corresponds to some extent with aligning with human men-
tal models.

Some interpretability approaches yield explanations that
describe complex models without actually modifying them.
For example, Ribeiro et al. and Lundberg and Lee created
linear models to locally approximate a complex decision
boundary (e.g., a neural net’s classification boundary)
(Lundberg & Lee, 2017; Ribeiro et al., 2016). However, such
post-hoc techniques do not reflect the underlying decisions
or representations of the model being explained. This poses
both theoretical and real challenges: the disconnect between
explanations and truth is troubling and can be exploited to
generate incorrect explanations (Rudin, 2018; Slack
et al., 2020).

Other researchers have taken a different approach by
changing models to facilitate interpretation. Prior work in
disentanglement separated representations within neural nets
into composable representations (Higgins et al., 2017;
Mathieu et al., 2016; Ridgeway & Mozer, 2018); however,
while such methods achieve theoretical disentanglement, the
representations are not guaranteed to align with human
intuition. In fact, the cases in which disentangled representa-
tions match human notions appear to be due primarily to
inductive biases and parameter tuning rather than theoret-
ical guarantees (Locatello et al., 2019). With the introduction
of labeled data, other techniques have managed to remove
information from representations to create “fair” predictors
that ignore protected input attributes, but such techniques
only define what information representations should not
include (Louizos et al., 2016). Still other work has incorpo-
rated case-based reasoning as a building block of interpret-
able models (Chen et al., 2019; Kim et al., 2014; Li
et al., 2018).

Recent work also suggests the importance of model inter-
pretability in enabling effective human-agent interaction.
The three levels of situational awareness defined by Endsley
(Endsley, 2011)—perception, comprehension, and projec-
tion—suggest that prediction of an agent’s next action is
enhanced by facilitating the human’s understanding of that
agent’s current state and functionality. In addition,
Sanneman and Shah formally established the connection
between interpretability methods and situational awareness
(Sanneman & Shah, 2020).

Our work differs from traditional interpretability research
in two ways. First, we focused on representation learning
specifically, rather than studying all aspects of a model’s
behavior. Second, our formulation of latent space alignment
was not restricted to only partnering with humans. Instead,
we generalized the problem of learning alignments and
treated humans just one of many possible partners.

14.4. Ontology matching

Ontology matching “aims at finding correspondences
between semantically related entities of different ontologies”
(Euzenat et al., 2007). More intuitively, this means finding a
mapping between two sets of labels that refer to the same
objects. For example, two different languages like French
and English have different words for the same concepts; a
French-English translator provides a way of converting from
one to another.

Roboticists and AI researchers have long understood the
importance of ontology matching to help heterogeneous
agents communicate, including (Trojahn et al., 2011; Van
Eijk et al., 2001; Wiesman et al., 2002), among others. These
various works offer solutions to mapping between the ontol-
ogies of two or more pre-trained agents.

While we appreciate the motivation of reconciling model
ontologies, our approach differs in because, rather than
starting with pre-trained agents with fixed ontologies and
deducing a mapping between them, our approach is used in
training the agents themselves.

15. Contributions

In this article, we took a step towards fluent robot teamwork
by enabling agents to align their internal representations
with that of a partner, whether human or machine. We
introduced a new, data-efficient mechanism for latent space
alignment that trained models using as little as 8 examples
of their partner’s representation for particular inputs. Two
proposed metrics of latent space alignment provided a meas-
ure of compatibility between agents, which we used to com-
pare our technique to others from social convention and
interpretability literature. In studies of machine partnerships,
we identified the utility of learning the latent space of a pre-
trained agent and noted the improvements our technique
afforded. Human participant studies similarly demonstrated
that our technique enabled models to learn simple human
conventions, resulting in better human-agent team
performance.

The findings from this article indicate promising avenues
for future research. First, more extensive user studies could
measure ASP’s ability to train models that conform to a per-
sonalized latent space designed by participants. That is,
rather than use the researcher-generated latent designs, par-
ticipants could create designs according to their own prefer-
ence. Second, this work demonstrated the importance of
good latent designs for human comprehension: further
research into characteristics of good designs could support
the application of this technique in a wide variety of set-
tings. Lastly, the high-level lesson of this article—that self-
play, conforming to a distribution, and a small amount of
paired data can efficiently train agents to adopt a protocol—
is widely applicable. I would be delighted to see this tech-
nique adopted in the fields of natural language processing,
for example: information would be passed through words,
those words must reflect the distribution of words from the
language, and a dictionary could provide the meanings or
groundings of the words.
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Appendix A.

Learned latent spaces from designs.

In Section 10, we explained the set of experiments wherein models
were trained to align with latent space designs. Figures of the designs
were included in the main text, but the patterns that the models them-
selves learned were plotted below. That is, Figures A1–A3 are visualiza-
tions of the latent spaces that the model learned, which in turn sheds
light on the relative strengths of different designs and training techni-
ques. (Given that the learned latent spaces for the intersection and

target tasks were quite similar, only the latent spaces for the target task
were plotted.)

Consistent patterns were apparent in learned latent spaces. First,
techniques that did not use data from designs often learned surprising

Figure A1. Parity task. (a,b) The autoencoder and PCN networks created clus-
ters by parity, but at surprising orientations. OSP (c) and ASP (d) both allowed
for human guidance to move even numbers into a rectangle on the left and
odd numbers into a rectangle on the right—although ASP resulted in sharper
divisions between groups. Creating clusters by digit in a dialpad pattern was
possible but overly complex for predicting parity (e). (a) PAE. (b) PCN. (c) OSP
by digit. (d) ASP by digit. (e) ASP by parity
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or unintuitive latent spaces. For example, clusters of MNIST digits
were arranged in an unexpected layout, and sketch-based encodings
resembled noisy pixels instead of clear lines. Second, ASP generated
“sharper” learned representations than OSP did. For 2D latent spaces,
that meant clearer divisions between clusters of encodings; for sketches,
that led to fewer gray pixels and more continuous dark lines.

Appendix B.

Survey prompt

The following prompt was shown to AMT participants at the start of a
survey assessing trust calibration for the digit prediction task:

In this task, we will ask you questions to determine if you can fig-
ure out the “language” the computer uses to solve pattern match-
ing problems.

In the same way that an English speaker and a French speaker will
use different words or phrases to talk about the same object, machines
that use artificial intelligence learn their own sorts of representations
of objects.

These representations are typically a series of numbers instead of
words, but they have meaning to the machines nonetheless. Just like an

English speaker who hasn’t studied French may not know what a
French speaker is saying, humans often have trouble understanding the
representations of machines. If we want to rely upon or work with
machines, though, we would like to make sure that we can understand
what representations they are using. If we can understand a machine’s
language, we can better judge whether it is making good or
bad decisions.

In this survey, you and a machine see a series of images of hand-
drawn digits (e.g., a photo of someone who wrote the number 8). Our
machine generates some numbers as its representation of the image.
You may think of those numbers sort of like words. The machine then
runs some computations on those numbers and tries to figure out
what digit was originally drawn in the image.

A useful analogy for this computation process is the game of
“telephone.” First, imagine that a person looks at an image and thinks
of a few words. That first person then says those words to a second
person who has to figure out what was in the image. The machine con-
verts an image to a representation and then the representation to a
decision on the digit. For example, if the machine sees an image of a
handwritten 8, it converts that image into a representation of its choice
and then, based on the representation, the machine says that there was
an 8 in the image. The machine plays this game of telephone so that it
can learn a general representation of an eight (like it is made up of

Figure A2. Digit task. (a,b) The autoencoder and PCN networks created clusters by digit but in an unintuitive layout. OSP (c) and ASP (d) both allowed for human
guidance to move those clusters into a telephone grid, but ASP resulted in sharper divisions between clusters. Using the parity clusters from earlier remained pos-
sible but was less useful (e). (a) PAE. (b) PCN. (c) OSP by parity. (d) ASP by parity. (e) OSP sketches. (f) ASP sketches. (g) PCN sketches.

Figure A3. Target task. (a–d) In the top row, 2 D encodings of trajectories form patterns by target bolt, but OSP and ASP imposed a ray structure. (e–g) 16� 16
encodings of trajectories turned into sketches for OSP and ASP, but unsupervised approaches look like noise.
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two zeros stacked on top of each other), rather than simply memoriz-
ing the answer for every single picture it sees.

Unfortunately, our machine isn’t perfect. What we would like to
measure in this experiment is whether humans can tell when the
machine is going to mess up. You will be shown an image of a digit
and the representation that the machine generated, and your job will
be to say how confident you are that the machine will predict the cor-
rect digit. If the machine spoke English, this would be easy: if you saw
an image of a 8 but the representation said “it’s a 7,” you could say
that the machine will probably mess up.

Because the machine doesn’t speak English, below are some exam-
ples of how the machine has behaved in the past; these examples can
help you learn what the machine’s representations mean.

In the column on the left, you see images of handwritten digits. In
the middle column, you see figures that depict information about the
machine’s representations. Pay attention to the location of the X in
the figure. Its location is the representation that the machine uses for
the image of the handwritten digit on the left. That’s why, when the
image of the handwritten digit changes in different rows, the X moves
to different locations. All the colorful points in the figures with the X’s

are just a way of showing extra information: the locations of the points
were generated by tracking the X’s for other images, and then each
point was colored by what digit the machine thought was in the image.
For example, if the machine represents an image as an X right in the
middle of the figure and predicts that the image is the digit 0, you will
see a dark red dot in the middle of the figure (using the colorbar as
shown in the figures below). Lastly, in the right column, you see what
digit the machine thought was in the image based on the location of
the X.

In this survey, you will be shown an image of a hand-written digit
and the representation that the machine generated for that image, and
you will be asked how confident you are that the machine will cor-
rectly predict the digit in the image. After answering the question, you
will be told whether the machine was correct or not for the case you
just saw. You will also be asked to answer a question about how confi-
dent you are about the performance of the machine overall (instead of
just for one particular image). For example, even if there are some
scenarios where you think the machine is very accurate, but you think
that most of the time it will make a mistake, you might say that you
are no.
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