
Incorporating Side-Channel Information into Convolutional Neural
Networks for Robotic Tasks

Yilun Zhou1 and Kris Hauser2

Abstract— Convolutional neural networks (CNN) are a deep
learning technique that has achieved state-of-the-art prediction
performance in computer vision and robotics, but assume
the input data can be formatted as an image or video (e.g.
predicting a robot grasping location given RGB-D image input).
This paper considers the problem of augmenting a traditional
CNN for handling image-like input (called main-channel input)
with additional, highly predictive, non-image-like input (called
side-channel input). An example of such a task would be
to predict whether a robot path is collision-free given an
occupancy grid of the environment and the path’s start and goal
configurations; the occupancy grid is the main-channel and the
start and goal are the side-channel. This paper presents several
candidate network architectures for doing so. Empirical tests
on robot collision prediction and control problems compare the
the proposed architectures in terms of learning speed, memory
usage, learning capacity, and susceptibility to overfitting.

I. INTRODUCTION

Deep learning is a powerful machine learning technique
that uses many-layered neural networks. One particularly
successful network structure in computer vision and image
processing domains is the Convolutional Neural Network
(CNN), where each layer performs a feedforward convo-
lutional transformations from an input tensor (an image-
like, multi-dimensional dense array) to an output tensor of
different shape. CNNs are particularly suited for image-like
input due the spatial coherence of images and the advent
of general purpose graphics processing units (GPUs) which
make training fast on arrays up to 3- or 4-D. Exploiting these
image-like properties leads to superior empirical perfor-
mance compared to other learning methods such as support-
vector machine (SVM) or multi-layer perceptron (MLP).

Deep network architectures for incorporating non-tensor
information have been less well studied. Multi-modal deep
learning architectures use several predictive channels in a
unified manner to boost prediction performance [1], [2], [3].
By contrast, we consider a situation in which no channel
is significantly predictive on its own, but rather the target
concept exhibits strong coupling between channels.

This type of problem setting is characteristic of robotics
and other control problems, in which other information
about the robot’s state and/or task parameters should be
incorporated with image-like information. This side-channel

*Y. Zhou is supported by a Pratt Undergraduate Research Fellowship. K.
Hauser is partially supported by NSF grant #1218534.

1Y. Zhou is with the Department of Electrical & Computer Engineering
and Department of Computer Science. yilun@cs.duke.edu

2K. Hauser is with the Department of Electrical & Computer Engi-
neering and Department of Mechanical Engineering & Materials Science.
kris.hauser@duke.edu

input usually has much lower dimensionality than the main-
channel image-like input, and does not exhibit spatial co-
herence. Furthermore, the side-channel input has equal or
sometimes greater importance than the main-channel input in
determining the outcome. For example, in predicting whether
an autonomous vehicle should steer left, right, stay straight,
accelerate, or brake, the outcome depends both on whether
obstacles exist in the vehicle’s way (from imaging) as well
as rules of the road (which are state dependent) and vehicle’s
destination (which is task dependent).

This paper proposes and compares four generic deep
architectures for augmenting traditional CNNs with side-
channel information. The activation map architecture uses
the side-channel to predict a modulation of the relevance
of main-channel elements; the mix-in architecture folds the
side-channel information into the first fully-connected layer
of network; the stacking architecture augments each element
of the main-channel with the entire set of side-channel vari-
ables; and the input-modulated kernel architecture computes
CNN kernel weights using the side-channel.

Experiments are performed on classification and regres-
sion problems in the domain of robot collision detection
and compliant simulation, in which the image-like main-
channel is an occupancy map of the environment and the
side-channel describes task-specific parameters. These toy
problems were chosen to be similar to real-world problems
in high-speed collision avoidance, but also easy to generate
millions of training examples with perfect ground truth. The
strengths and weaknesses of each architecture are compared
on several metrics, including training time, space complexity,
flexibility, and susceptibility to overfitting. Results suggest
that activation map and mix-in architectures are most practi-
cally viable in terms of space requirements and training time,
with activation map achieving the best overall performance.

Datasets, software, and extended results for all experi-
ments can be found at http://motion.pratt.duke.
edu/sidechannel/.

II. RELATED WORK

Our benchmark problems are in the domain of predict-
ing collision with arbitrary environments, which represents
fundamental operations in robot planning and control. Some
authors have considered similar problems. For example, Pan
et al [4] used locality-sensitive hashing to predict probability
of collision-free connection in sampling-based motion plan-
ners. Jetchev and Toussaint [5], [6] used metric learning and
support vector regression for trajectory quality prediction,
including environmental features. In contrast we do not

http://motion.pratt.duke.edu/sidechannel/
http://motion.pratt.duke.edu/sidechannel/


 

Convolution + 

Non-Linear Transformation 

Pooling 

More Conv, 

Non-Linear and Pooling 

… 

Fully Connected Layer 

M
o

re F
u

lly
 

C
o

n
n

ected
 L

a
y
ers 

…
 

Output 

Flatten 

Fig. 1. Standard CNN Architecture

design features but instead feed raw occupancy maps to the
learner.

CNNs have been used for handwritten character recog-
nition [7] and face recognition [8] for decades. However,
recently it gained a resurrection of people’s interest by its
superior performance [9] on the ImageNet challenge [10].
Since then, it has been applied to various other image-related
tasks such as image generation [11], image captioning [1],
and visual game playing [12].

CNNs have also been applied to many robotic tasks that
require computer vision. Most of the work uses 2D image-
like input. For example, Lenz et al [13] used a CNN to detect
grasping location for a parallel gripper from RGB-D image;
Schenck and Fox [14] combined a CNN and recurrent neural
network (RNN) to track liquid hidden in container for robot
manipulation tasks.

While most CNN work uses input of single modality:
an image-like densely structured matrix (or tensor), there
has also been some work on multi-modal deep learning.
For example, Ngiam et al [2] studied restricted Boltzmann
machine autoencoder architectures in combining audio and
video data for recognizing syllables pronounced in a video.
Wu et al [3] devised a deep learning architecture for learn-
ing image similarity from combination of different features
(modalities).

In these and related works, correlations between modes
improves prediction performance. In contrast, our work con-
siders a scenario in which neither mode is predictive alone,
and instead the information contained in both modes must
be fused to obtain reasonable performance (e.g., similar to a
MUX function). This setting is beginning to be studied by
other researchers, with recent [15] usually employing, in our
terminology, the mix-in architecture.

III. METHOD

We assume the learner is given examples of the input and
output of a function y = f(xm, xs) where the image-like
main-channel input xm is a c × h × w tensor, in which c
is the number of channels of input (e.g. RGB image has
3 channels), and h and w are the height and width of the
image, and the side channel xs is a d-dimensional vector.

For example, a collision detection problem may have the
main-channel input being an occupancy grid of the environ-
ment, stored as a dense image-like data structure, while the
side-channel information denotes the robot’s start and goal
configuration. The output may be binary for classification
tasks or real-valued for regression tasks. We are concerned
only with problems that obey the following assumptions: 1)
d � chw, and 2) both xm and xs are critical in predicting
y, and omitting either will lead to a poor result.

Our proposed architectures are designed to adhere to two
principles:

1) The structure of xm is preserved in its original form
to exploit the favorable properties of CNNs. In other
words, it is fed into the neural network without flat-
tening or other transformation; and

2) The side-channel input is not structured, so the network
should treat each input entry symmetrically. This prin-
ciple ensures that an architecture can be applied to a
wide variety of tasks. Although it may be useful to
study architectures that exploit the structure of side-
channel inputs, this is left for future work.

A. Standard CNNs

A standard CNN architecture (Fig. 1) consists of two
stages, each composed of multiple layers. The first is the con-
volutional stage, in which each layer performs convolution,
non-linear transformation, and (optionally) max-pooling. The
convolution layer takes a tensor of cin × hin × win, and
cout kernels with each of cin × hk × wk, and produces an
output tensor of cout × (hin − hk + 1) × (win − wk + 1).
Then a non-linear transformation is applied element-wise to
the convolution output. Typical choices include the rectifying
linear unit (ReLU), sigmoid, and hyperbolic tangent (tanh)
functions. We use ReLU in our training.

Pooling is a down-sizing process that replace every m×n
adjacent block by a function of its entries. We mainly use
2× 2 and 3× 3 max-pooling, which replaces each 2× 2 or
3×3 blocks by its maximum value. Other pooling techniques
include average-pooling and softmax-pooling [16].

The chosen values of cout, hk, and wk and m, n of the
optional pooling step define the structure of each layer in
the network, and the parameters of the kernel are learned
via backpropagation.

The second stage is fully connected stage. Its input is a
flattened output of the convolutional stage. Then each layer
computes h(W · x + b), where h is a non-linear function
(also ReLU in our experiment), W is a weight matrix and b
is a bias vector, both of which are learned. The structure of
the fully connected stage is defined by the number and size
of intermediate layers.

For classification, the final output layer minimizes the
negative log softmax likelihood loss. For regression, the
output layer minimizes mean-squared error.

The discussion above is for CNN with 2D input with
c channels. The extension to 3D input is straightforward.
Briefly, volumetric input is a 4D tensor with dimensions
c× l×w×h, with l being the additional dimension, length.



 

…
 

…
 

…
 

reshape 

⨀ 

element-wise product 
activated input 

activated map 

main-channel 

fully-connected network 

C
N

N
 

sid
e-c

h
an

n
el 

Fig. 2. Activation Map Architecture

Each individual kernel is a 4D tensor swept in a 4D tensor,
resulting in a 3D tensor (the channel dimension is collapsed
because it is not swept across). Pooling is modified to operate
on a cuboid for each channel.

B. Activation Map

The activation map architecture (Fig. 2) makes the as-
sumption that the side-channel information “modulates” the
main input in a clearly hierarchical way in that the relevance
and usage of main input is determined by the side-channel
information.

It is structured to first build an “activation map” which has
the same dimensions as the main-channel input. This stage
uses a fully connected deep network to learn a transformation
from xs to an “activation list” of length c · h · w, which is
then reshaped to a c× h× w activation map. The element-
wise product of the activation map and main-channel input
is then fed into a standard CNN to produce the output.

C. Mix-In

The mix-in architecture (Fig. 3) has a standard CNN
structure in the convolutional stage and uses only the main-
channel input. Immediately after the convolutional stage, the
side-channel information is mixed into the flattened neurons
and propagates through the fully-connected stage.

D. Stacking

The stacking architecture (Fig. 4) augments the main-
channel input by stacking it with d layers of side-channel
input, in which d is the dimension of side-channel informa-
tion. Each layer contains replicated values of xs for each
element of xm, and there are as many new layers as number
of side-channel input sources. Thus, if side-channel sources
contain 4 numbers denoting the 2D start and goal position,
and the main-channel input is a 1× h× w occupancy grid,
then the augmented input is of size 5× h× w.

 

main-channel 

Convolutional 

Stage 

flatte
n
ed

 co
n
v
o

lu
tio

n
 o

u
tp

u
t 

side- 
channel 

Fully-connected 
Stage 

Fig. 3. Mix-In Architecture

 

kernel 

side-channel 

main-channel replicate 

CNN 

Fig. 4. Stacking Architecture

E. Input-Modulated Kernel

The input-modulated kernel architecture (Fig. 5) uses side-
channel information to determine the kernel weights used
for convolution. For each layer in the convolutional stage, a
fully-connected network maps the side-channel input to the
kernel weights. Each kernel is computed from an independent
fully-connected network.

F. Training and Implementational Details

To train our model, we use the mini-batch-based Adam
optimization algorithm [17] in all examples, and the batch
size is selected from 5 to 200 so that the GPU memory
is not exhausted (and thus 3D tasks have smaller batch
size). We use the Python package Theano [18] to implement
our architectures, which uses NVIDIA CUDA Deep Neural
Network library (cuDNN) to perform feedforward and back-
propagation of convolution operations. Most of the critical
computation jobs are done on a NVIDIA GeForce GTX970
with 4GB memory.

IV. TEST PROBLEMS

We designed several toy collision prediction problems so
that each architecture can be tested on an “idealized” domain
where exact ground truth is available and millions of exam-
ples are available for training. Motion feasibility prediction
can serve as a primitive operation in motion planners (e.g.
collision detection along a line is needed for tree growth



 

main-channel 

side- 
channel 

…
 

…
 

…
 

fully-connected network 

… 

side- 
channel 

…
 

…
 

…
 

fully-connected network 

Fully-connected 
Stage 

Fig. 5. Input-Modulated Kernel Architecture

Problem MC SC Type Architecture

2D Block 20× 20 4
Classification

C3/50-M2-C4/30-
M2-F100-F100

2D Indep 20× 20 4
3D Block 20× 20× 20 6

Simulation 100× 100 4 Classification
C15/50-M2-C14/30-M3-

C5/20-M2-F100-F100

Col 2D F 100× 100 2
Regression

C7/50-M2-C6/50-M2-
C4/50-M2-F1000-F100Col 2D V 100× 100 4

Col Arm 52× 52× 34 1 Regression
C3/50-M2-C(2,2,3)/50-
M2-C(3,3,2)/50-C3/50-

F1000-F500

TABLE I
SUMMARY OF TEST PROBLEMS. MC MEANS MAIN-CHANNEL

DIMENSION; SC MEANS SIDE-CHANNEL DIMENSION.

in RRT), and collision distance/time prediction are required
of autonomous vehicle navigation and safety in industrial
robotic assembly. Table I summarizes key parameters of
each problem. All main-channel inputs are in the form of
an occupancy grid.

For the architecture column, “Cx/y” means a convolution
layer of with y kernels each of size x, which is a scalar
giving side length for equilateral kernel or a tuple giving
kernel shape; “Mx” a means max-pooling layer with down-
sampling rate of x on each side; “Fx” means a fully-
connected layer with x output variables. The output layer is
not specified as its shape is fully determined by the number
of output variables of the second-to-last layer.

a) Straight-line collision prediction: In 2D Block, 2D
Indep, and 3D Block, the task to learn is whether a line
segment is collision-free in a grid of obstacles. The side-
channel information is the start and end of the segment,
comprising 4 numbers in 2D and 6 numbers in 3D. For the
2D cases, start positions and goal positions are randomly

Fig. 6. 2D Block and 2D Indep collision prediction problems: Black
denotes obstacles.

Fig. 7. Simulation problem: the prediction is whether a point mass sliding
along obstacles can reach the goal, or settles into a local minimum. Here
the connection is successful.

selected within the workspace, while for the 3D case, they
are selected from top and bottom face respectively. In 2D
Block and 3D Block, obstacles are sampled as random
rectangles/cuboids, while in 2D Indep, occupied grid cells
are sampled independently at random (Fig. 6).

b) Simulation Connectivity Prediction: In Simulation,
the task is to predict whether a point mass can move to a
goal using compliant motion (Fig. 7). Start and goal positions
are generated uniformly at random and random triangular
obstacles are generated. Then, a physics simulation is run
to move a point mass from start position to goal position,
assuming obstacles are fixed and frictionless. The point can
slide against obstacles and still reach the goal configuration,
or it could be caught in a local minimum.

c) 2D Collision Distance/Time Prediction: In Col 2D,
the task is to predict the time at which a point mass, moving
in a 2D workspace, would collide with obstacles. Random
disk obstacles are scattered in the workspace. Two variations
of the problem are considered.

1) Fixed Path (Col 2D F): The robot moves on a fixed path
with uniform speed (Fig. 8 (a)). The side-channel input
is the current (x, y) position of the robot. Our training
and testing sets only maintain obstacle configurations
that at least collide with part of the robot path.

2) Variable Path (Col 2D V): The robot moves in a
random direction with a uniform speed. The side-



channel input is four numbers (x, y, vx, vy) denoting
current position and velocity with vx, vy ∈ ±[1, 5]. The
output is the time to nearest collision.

In both cases, the distance to nearest collision is calculated
by simple geometry.

(a) Col 2D F (b) Col Arm

Fig. 8. Col 2D F and Col Arm problem: path is traced out in red.

d) Arm Collision Distance Prediction: In Col Arm the
task is similar to Col 2D Fixed Path, but rather than using
a point mass robot, a 3D industrial robot model (Staubli
TX90L) is used (Fig. 8 (b)). The robot moves along a
fixed path that spans much of its workspace. The obstacles
are approximately human-sized cylinders simulating humans
walking around the robot. The robot is also included in the
occupancy grid, as though it were sensed by cameras.

The robot path is discretized to 4726 steps such that
consecutive configurations have very similar but different
occupancy grid. The side-channel is simply the index of the
configuration. The output to be learned is the number of steps
until first collision with an obstacles.

V. RESULTS

A. Summary

Table II shows the testing performance for each archi-
tecture on each task, reporting error rate for classification
problems and root-mean-squared error for regression. During
testing, a random subset of a pool of test problems is selected
and error is measured. Then we smooth the test error across
iteration using moving average, and the number to average
is much less than total number of test iterations so that the
initial high error stage does not affect the final test result.
The Base column displays error of a baseline CNN trained
only on main-channel input. The Range column shows the
minimum and maximum possible error. The Kernel architec-
ture trained extremely slowly, and after a day of training time
with no sign of convergence, we marked results with T!. For
3D Block and Col 2D V, stacking side-channel input to the
original main-channel input will exceed the 4GB memory
on the GPU. For these tasks (denoted with *) we stack the
side-channel with the output of the first max-pooling layer.

B. Typical results

A typical learning curve is shown on 2D Block (Fig. 9).
Three activation map parameters are tested, with X hidden
neurons per layer in the activation stage (Activation X).
Activation 1000 performs best, followed by Activation 2000,

Act Mix-In Stack Kernel Base Range

2D Block 1.7% 5.8% 3.8% 4.6% 27.2% [0, 100%]
2D Indep 6.8% 22.6% 18.3% T! 33.8% [0, 100%]
3D Block 4.4% 5.4% 4.7%∗ T! 25.2% [0, 100%]
Simulation 23.9% 26.8% 35.0% T! 47.0% [0, 100%]
Col 2D F 16.8 14.8 19.5 T! 72.2 [0, 331]
Col 2D V 2.20 2.82 2.25∗ T! 5.72 [0, 100]
Col Arm 84 139 280 T! 104 [0, 4725]

TABLE II
ERRORS OF EACH ARCHITECTURE ON VARIOUS TASKS. “ACT” COLUMN

REPORTS BEST PERFORMANCE AMONG DIFFERENT PARAMETER

SETTINGS (NUMBER OF HIDDEN NEURONS IN COMPUTING THE

ACTIVATION MAP). “T!” MEANS TRAINING TIME IS TOO LONG TO

REACH CONVERGENCE. “*” INDICATES THAT, DUE TO MEMORY ISSUES,
THE SIDE-CHANNEL WAS STACKED TO THE OUTPUT OF THE FIRST

MAX-POOLING LAYER RATHER THAN THE MAIN CHANNEL.

Fig. 9. A typical learning curve, here shown for 2D Block. (Best viewed
in color)

stack, kernel (stopped at around 2000th iteration due to slow
training), mix-in, and Activation 10.

For the 2D Col F regression problem, Fig. 10 plots
ground truth vs. prediction for each test instance and a
cumulative distribution function (CDF) of error for the mix-
in architecture, which performed the best on this task. The
prediction is generally close to ground-truth, with 95% of
errors less than 28.2 units (<10% of output range).

For the activation map architecture, the map can directly
reveal how side-channel information is incorporated into the
prediction. In collision detection tasks, the learned activation

(a) Ground truth vs. prediction (b) CDF of errors

Fig. 10. Mix-in architecture test results on Col 2D. (Best viewed in color)



Fig. 11. Activation maps for certain start and end points (indicated as
circles) for collision prediction problems. Warmer color indicates higher
activation. Left: 2D Blocks. Middle: 3D Block. Right: 500 largest values of
the same 3D Block example. (Best viewed in color)

Fig. 12. Activation map for Simulation problem: The activation pattern is
not as distinct as collision prediction, because the existence of an obstacle
can “steer away” a path from a straight line. (Best viewed in color)

map approximates the swept volume of the robot (Fig. 11).
However, it is less interpretable on the Simulation problem
(Fig. 12) where relevance is intimately tied with the main-
channel input.

C. Interpretation

In general, we observe the following trends.
1) Activation map performs well all around, but works

best when side-channel input solely and uniquely de-
termines the relevance of main-channel input;

2) Mix-in is good when the main-channel input also af-
fects the relevance of itself but may suffer from loss of
information due to over-compression in convolutional
stage;

3) Stacking generally does not perform as well and scales
poorly with the number of side-channel inputs d;

4) Input-modulated kernel takes too long for even
moderately-sized problems, and thus is not practical;
and

5) Baseline CNNs are usually unable to achieve good
performance. The exception is when the side-channel
information is “naturally” included in the main-channel
information, as observed in the Col Arm task.

The advantages and disadvantages of each architecture are
discussed in more detail below.

a) Activation Map: Besides its good performance, an
advantage of the activation map is that it is highly inter-
pretable via visualization. It also performs the best when
the side-channel input can by itself determine the relevance
of main-channel input, e.g., in collision detection where

(a) Activation 10 (b) Activation 1000 (c) Activation 2000

Fig. 13. Effect of the number of neurons per hidden layer for activation
map. For 2D Indep, (a) 10 neurons are not expressive enough to represent
the straight-line swept volume, (b) 1000 neurons per hidden layer gives best
performance, and (c) 2000 neurons overfit the training examples, exhibiting
activation in the lower right region of the environment regardless of start
and goal positions. (Best viewed in color)

Fig. 14. Activation map for fixed-path 2D collision time prediction task.
The entire path is activated because side-channel information alone cannot
uniquely determine the relevance of features. Robot current position is
circled in red. (Best viewed in color)

the activation approximates the swept volume (Fig. 11).
It performs worse (but still fairly well) on the simulation
feasibility problem (Fig. 12) where relevance is intimately
tied with the main-channel input. Similarly, for collision
time prediction (Fig. 14), it predicts that the whole path
is potentially relevant, but an even more minimal activation
map could be determined by the configurations of obstacles
on the path: if an obstacle appears early on the path, then
the remainder is actually irrelevant.

There are two main disadvantages of the activation map.
First, its performance is relatively sensitive to the chosen
number of neurons in the activation stage. Second, the map
is computed through a fully-connected network and requires
many hidden neurons per intermediate layer (Fig. 13) to
induce a flexible-enough function. However, since the num-
ber of main-channel inputs is large, learning such a fully-
connected network may require a lot of data and be prone to
over-fitting (note the extraneous pattern on Fig. 13 (c) and
Fig. 14).

b) Mix-In: Mix-in offers the best space efficiency and
no tuning requirement, and performs reasonably well. The
convolutional stage acts as a feature detector that compresses
main-channel input down to a small set of features, which



may destroy important information that should be mixed
with the side-channel input. For example, in 2D Indep, the
environmental variation is quite large, and it is hard for a
compressed representation to capture all subtleties of the
original environment.

c) Stacking: Space complexity is the biggest problem
with stacking, in that it augments the initial O(chw + d)
input to O((c+d)hw). It also appears to have poor capacity
and/or fall into local minima, performing quite poorly on the
2D Indep, Simulation, and Col Arm examples.

d) Kernel: Training of the input-modulated kernel ar-
chitecture is prohibitively expensive even for moderately
sized problems, and thus its characteristics are not fully
studied. The cuDNN library is optimized for computing
simultaneous convolution of multiple images with the same
kernel. In this architecture, each kernel is dependent on side-
channel information, which is different for each training
example. Thus, batch-based training cannot be performed in
parallel.

VI. CONCLUSION

This paper empirically compared four candidate architec-
tures for incorporating side-channel information into CNNs.
Experiments on simulated collision prediction problems sug-
gest that the Activation Map architecture, which maps the
side-channel to a pixel-by-pixel modulation of the image-
like main-channel, generally performs well. However, its
performance is sensitive to the tuning of the number of
neurons per layer, and may be susceptible to overfitting in
the presence of huge numbers of main-channel inputs due to
the use of fully-connected networks.

To address this latter problem it may be possible to borrow
the idea of local receptive field of CNNs, in which spatial
coherence is used to gradually reduce the size of the input
data. In our case, we can “reverse” the process to gradually
build larger and larger maps, until the map has the same size
as the main-channel input. This idea makes sense intuitively
because an activation map is also likely to exhibit spatial
coherence much like the main-channel (i.e. if one position
is relevant, its neighbors tend also to be relevant).

More study is needed to assess the quality of the Kernel
architecture, which is currently impractical on large problems
due to the inability to perform batch convolution. New soft-
ware and/or hardware support of fast individual convolution
should be developed to study this idea further. It may be
also possible to improve prediction performance even further
with hybrid network structures, such as activation + mix-in.
In addition, a more compact stacking layer could be learned
from a fully connected network (similar to the activation
architecture) and stacked to augment the main-channel input.

REFERENCES

[1] A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for
generating image descriptions,” in Proc. IEEE Conf. Computer Vision
and Pattern Recognition (CVPR), 2015, pp. 3128–3137.

[2] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng,
“Multimodal deep learning,” in Proc. 28th Intl. Conf. on Machine
Learning (ICML), 2011, pp. 689–696.

[3] P. Wu, S. C. Hoi, H. Xia, P. Zhao, D. Wang, and C. Miao, “Online mul-
timodal deep similarity learning with application to image retrieval,”
in Proc. 21st ACM Intl. Conf. Multimedia, ser. MM ’13. New York,
NY, USA: ACM, 2013, pp. 153–162.

[4] J. Pan, S. Chitta, and D. Manocha, “Faster sample-based motion
planning using instance-based learning,” in Algorithmic Foundations
of Robotics X. Springer, 2013, pp. 381–396.

[5] N. Jetchev and M. Toussaint, “Trajectory prediction: learning to
map situations to robot trajectories,” in Proc. 26th Annual Int. Conf.
Machine Learning (ICML). ACM, 2009, pp. 449–456.

[6] ——, “Trajectory prediction in cluttered voxel environments,” in Proc.
IEEE Intl. Conf. Robotics and Automation (ICRA). IEEE, 2010, pp.
2523–2528.

[7] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[8] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, “Face
recognition: A convolutional neural-network approach,” IEEE Trans.
Neural Networks, vol. 8, no. 1, pp. 98–113, 1997.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems (NIPS), 2012, pp. 1097–1105.

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A large-scale hierarchical image database,” in Proc. IEEE
Conf. Computer Vision and Pattern Recognition (CVPR), 2009, pp.
248–255.

[11] K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, and D. Wier-
stra, “DRAW: A recurrent neural network for image generation,”
arXiv:1502.04623, 2015.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[13] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic
grasps,” Intl. J. Robotics Research (IJRR), vol. 34, no. 4-5, pp. 705–
724, 2015.

[14] C. Schenck and D. Fox, “Detection and tracking of liquids with
fully convolutional networks,” in Proc. Robotics: Science and Systems
Workshop on Are the Sceptics Right? Limits and Potentials of Deep
Learning in Robotics, 2015.

[15] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” J. Machine Learning Research (JMLR),
vol. 17, no. 39, pp. 1–40, 2016.

[16] O. Abdel-Hamid, L. Deng, and D. Yu, “Exploring convolutional
neural network structures and optimization techniques for speech
recognition,” in Proc. Interspeech Conference, 2013, pp. 3366–3370.

[17] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv:1412.6980, 2014.

[18] Theano Development Team, “Theano: A Python framework
for fast computation of mathematical expressions,” arXiv,
vol. abs/1605.02688, May 2016. [Online]. Available: http:
//arxiv.org/abs/1605.02688

http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688

	INTRODUCTION
	RELATED WORK
	METHOD
	Standard CNNs
	Activation Map
	Mix-In
	Stacking
	Input-Modulated Kernel
	Training and Implementational Details

	TEST PROBLEMS
	RESULTS
	Summary
	Typical results
	Interpretation

	CONCLUSION
	References

