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Fairness (in NLP)

Warning: some examples of stereotypes that are potentially offensive

2

• Issues of unfairness (biases) 


• Detection 


• Mitigation



NLP models are prevalent
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Chatbot Personal assistant

Recommendation system Healthcare system
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Paul Allen was born on January 21, 1953, in Seattle, Washington, to Kenneth Sam Allen 
and Edna Faye Allen. Allen attended Lakeside School, a private school in Seattle, where 
he befriended Bill Gates, two years younger, with whom he shared an enthusiasm for 
computers. Paul and Bill used a teletype terminal at their high school, Lakeside, to 
develop their programming skills on several time-sharing computer systems.

Coreference Resolution
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SQuAD 2.0 

(Rajpurkar & Jia et al. ’18)

Q: Who proved that air is necessary for combustion? 
A: Robert Boyle

🥳

Question Answering
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Detecting and Mitigating Social Biases

e.g. gender, race, ethnicity, …
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Bias in NLP
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• Motivated Example — coreference resolution

J Zhao, T Wang, M Yatskar, V Ordonez, KW Chang. Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods. NAACL 2018
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• Pro-stereotypical & Anti-stereotypical
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Bias = �(F1(pro), F1(anti))

J Zhao, T Wang, M Yatskar, V Ordonez, KW Chang. Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods. NAACL 2018



Gender bias in coreference
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• Model performance (F1 score) is 67.7%

F 1
F1

J Zhao, T Wang, M Yatskar, V Ordonez, KW Chang. Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods. NAACL 2018
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• Coreference resolution is biased

• Model fails for female when given the same context

machine translation toxicity detection dialogue system



Harm from NLP Bias
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Medical QA —> strong 
bias in intersectional 
race-gender groups[1]

[1] Cecile Loge et al. Q-Pain: A Question Answering Dataset to Measure Social Bias in Pain Management. NeurIPS 2021 Datasets and Benchmarks



How to detect bias?
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Cooking

Role Noun
Place kitchen
Food vegetable
Agent woman

… …

What’s in the image?

J Zhao, T Wang, M Yatskar, V Ordonez, KW Chang. Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints. EMNLP 2017. Best Long Paper Award 

Visual Semantic Role Labeling (vSRL)
http://imsitu.org/
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Male

Female

33%

67%
http://imsitu.org/
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Male

Female

16%

84%
Gender Bias Amplification



Algorithmic Bias in Grounded Setting
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Algorithmic Bias in Grounded Setting
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imSitu: visual Semantic Role Labeling 
(activity/verb)
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M Yatskar, L Zettlemoyer, A Farhadi. Situation Recognition: Visual Semantic Role Labeling for Image Understanding. CVPR 2016



imSitu: visual Semantic Role Labeling 
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imSitu: visual Semantic Role Labeling 
(activity/verb)
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MS-COCO: Multilabel Classification 
(object/noun)
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(CRF)



Dataset Bias
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Bias Amplification
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Model Bias Amplification
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69%
73%
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• Corpus level constraints on model output

29

‣ Use Lagrangian Relaxation                      

‣ General 

‣ Formulate as ILP                         no model retraining

reuse model inference

coreference, dependency parsing, and 
information extraction, etc.
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Bias De-amplification in imSitu
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Bias De-amplification in imSitu
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21% 23.87
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Why Bias Amplification?

49% 51%

🤨🤨

Force a model to make a decision 
even when it is confused. 



How about in Distribution?
• Top prediction v.s. posterior distribution
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Bias Amplification

36

Posterior DistributionTop Prediction
51.4% violations81.6% violations

Forcing a model to make a decision 
does amplify the bias. 
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imSitu 51.4% Violation 23.2% Accuracy

w/ PR 2.4%   Violation 23.1% Accuracy



How to define bias
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Directional Bias Amplification. Wang & Russakovsky. ICML 2021
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• Original: gender bias amplification increases

• A→T: decreases

• T→A: increases
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• Original: gender bias amplification increases

• A→T: decreases

• T→A: increases
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42

Really?

Similar likelihood ≠ unbiased  

Corpus-wise ≠ everywhere  



LOGAN: Local Group Bias Detection
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False negative for group 2 (e.g., female)

J Zhao, KW Chang. LOGAN: Local Group Bias Detection by Clustering. EMNLP 2020
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Race Bias in Toxicity Detection

• Performance (accuracy)  gap between white/black is 4.8%

46

🤨 Maybe …

🤔 No much …

🤯

• Performance gap between a random split is 2.4%

• Performance gap in a local cluster (politics topic) is about 19%

J Zhao, KW Chang. LOGAN: Local Group Bias Detection by Clustering. EMNLP 2020
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Race Bias in Local Region

47 J Zhao, KW Chang. LOGAN: Local Group Bias Detection by Clustering. EMNLP 2020

𝚫(      ,       )Bias = 

Decision boundary. https://wrhuang.com/

Model can behave very differently 

in local regions.

Existing way of bias evaluation:

overall performance gap
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• Bias Detection in Local Regions 

  ⇒ trust a noxious model

  ⇒ clustering → strong bias



Biases in NLG

The Woman Worked as a Babysitter: On Biases in Language Generation. Sheng et al. EMNLP 2019
50
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Bias Evaluation in NLG

• Bias contexts


• Respect context 


• Occupation context


• Demographics


• {man, woman, Black, White, gay, straight} 

XYZ was known for … XYZ was regarded as …

XYZ worked as … XYZ earned money by …

52
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Bias Evaluation in NLG
• Regard towards a demographic

53

• “XYZ, worked as a waitress at the hotel down the street”  👥 

• “XYZ, known for his kindness, has died” 👥 👍

• “XYZ was a pimp and her friend was happy” 👥 👎
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Regard Sentiment

Sentiment underestimates magnitude of negative biases
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How to control bias?
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NLP Model Pipeline

56

Data

Representation

(Structured) Inference

Prediction Evaluation
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Data Augmentation

Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods. Zhao et al. NAACL 2018
58



Data Augmentation

Performance Bias

Original
Data Augmentation

Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods. Zhao et al. NAACL 2018
58



Data Augmentation
How about inflected languages?

Counterfactual Data Augmentation for Mitigating Gender Stereotypes in Languages with Rich Morphology. Zmigrod et al. ACL 2019
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59

ICCV 2019



Bias in Representations

60

Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings. Bolukbasi et al. NeurIPS 2016

c.t. Kai-Wei Chang



Bias in Representations

60

Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings. Bolukbasi et al. NeurIPS 2016

c.t. Kai-Wei Chang



Representations

Hard Debias (word2vec)
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Representations

Hard Debias (word2vec) Towards Debiasing Sentence Representations. Liang et al. ACL 2020.

61



Existing models show problematic bias towards certain demographic attributes.

Ethical-Advice Taker: Do Language Models Understand  
Natural Language Interventions?

62 ZKKSC. ACL 2021 Findings



To verify if existing models can understand and follow interventions.

LEI: Linguistic Ethical Interventions
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LEI: Linguistic Ethical Interventions

w/ ethical interventions  
→ teach models to behave 

ethically  

w/ adversarial (irrelevant) 
interventions 

→ verify models understand 
the interventions  

63 ZKKSC. ACL 2021 Findings
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Key Takeaways

• Present LEI as a new NLU challenge.

Attribute
#Ethical 

Interventions
#Adversarial 
Interventions

#Irrelevant 
Interventions

Religion 48 48 48

Ethnicity 48 48 48

Gender 8 8 8

64
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Pre-trained Models

MABEL: Attenuating Gender Bias using Textual Entailment Data. He et al. EMNLP 2022 
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Paper List

https://github.com/uclanlp/awesome-fairness-papers
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